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Abstract— Recent connections in the adaptive control literature
to continuous-time analogs of Nesterov’s accelerated gradient
method have led to the development of new real-time adaptation
laws based on accelerated gradient methods. However, previous
results assume that the system’s uncertainties are linear-in-the-
parameters (LIP). To compensate for non-LIP uncertainties, our
preliminary results developed a neural network (NN)-based accel-
erated gradient adaptive controller to achieve trajectory tracking
for nonlinear systems; however, the development and analysis
only considered single-hidden-layer NNs. In this article, a gener-
alized deep NN (DNN) architecture with an arbitrary number of
hidden layers is considered, and a new DNN-based accelerated
gradient adaptation scheme is developed to generate estimates
of all the DNN weights in real-time. A nonsmooth Lyapunov-
based analysis is used to guarantee the developed accelerated
gradient-based DNN adaptation design achieves global asymp-
totic tracking error convergence for general nonlinear control
affine systems subject to unknown (non-LIP) drift dynamics
and exogenous disturbances. A comprehensive set of simulation
studies are conducted on a two-state nonlinear system, a robotic
manipulator, and a complex 20-D nonlinear system to demon-
strate the improved performance of the developed method. Our
simulation studies demonstrate enhanced tracking and function
approximation performance from both DNN architectures and
accelerated gradient adaptation.

Index Terms— Adaptive control, deep neural networks,
Lyapunov methods, nonlinear systems, uncertain systems.

I. INTRODUCTION

RECENT advances in deep learning have led to signifi-
cant impacts across various technological fronts [1]. For

example, deep learning has made significant contributions to
applications such as natural language processing [2], object
detection [3], and reinforcement learning [4], [5], [6]. These
advances are attributed to the capability of deep-learning mod-
els to embed complex representations of functions into a series
of nested parametrized layers of abstraction. Of particular
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interest in this article is the application of deep NN (DNN)
architectures for the control of uncertain nonlinear dynamical
systems. DNNs are universal function approximators that are
capable of approximating continuous functions to a prescribed
accuracy [7], [8], [9]. Typically, numerical optimization-based
methods have been used to train DNNs by generating estimates
of the DNN weights such that a cost function is minimized
over a training dataset [10]. Although DNN training algorithms
provide a method to estimate DNN weights, in the context
of control of dynamical systems, training is typically per-
formed offline and then held constant during implementation.
The resulting controller uses the DNN as a fixed approx-
imate model, with no guarantees on how close the model
approximates the actual model experienced during real-time
implementation nor what effects such a model mismatch
may have on the stability of the controller. Moreover, such
offline training often requires a large dataset, which could be
expensive or not possible to obtain.

Recent results in [11], [12], [13], [14], and [15] develop the
first DNN-based adaptive controllers that enable continuous
learning based on weight adaptation laws that are derived from
a Lyapunov-based stability analysis. In [11], [12], and [13],
Lyapunov-based adaptation laws are developed to adjust the
output layer of a fully connected DNN in real-time, while the
inner layers are updated discretely using data-driven offline
training algorithms. More recent results in [14], [15], and
[16] develop the first Lyapunov-based adaptation laws that
can be used to enable continuous learning by all the weights
of a DNN in real time. In [14], a modular approach is
used to develop constraints on the DNN weight adaptation
laws, but this approach lacks constructive insights for the
adaptive update law. Results in [15] provide the first insights
on Lyapunov-derived weight adaptation design for fully con-
nected DNNs which is then generalized to residual neural
networks (ResNets) in [16]. The adaptation laws in [11], [12],
[13], [14], [15], and [16] use gradient-based adaptation laws
that are designed to cancel cross-terms resulting from a first-
order Taylor’s series approximation. However, as mentioned
in [17] and [18], gradient-based adaptation laws may exhibit
poor transient performance with oscillations and slow conver-
gence in the weight estimates.

Higher-order accelerated gradient-based optimization meth-
ods, such as Nesterov’s method [19] and the Heavy-ball
method [20], have gained significant interest due to the
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improved transient performance and faster convergence rates
compared to first-order methods [21].1 Motivated by the
performance capabilities of accelerated gradient-based algo-
rithms, results such as [4], [22], [23], [24], [25], [26], [27],
[28], [29], [30] employ Nesterov’s method, the Heavy-ball
method, or a variant of the acceleration strategy for deep-
learning applications. For example, results in [22] develop
a nonlinear conjugate gradient-based adaptive momentum
algorithm to improve DNN training for image classification.
Results in [23] and [25] develop acceleration-based algorithms
for a distributed optimization setting. Results in [24] and [28]
apply the acceleration strategy for nonsmooth optimization
problems. Results in [4] develop accelerated deep reinforce-
ment learning (DRL) algorithms to train an agent to learn an
optimal policy that is estimated by a DNN. In the context
of DRL, the learned policies dictate how the agent performs
sequential decision-making to achieve a desired task. The
deliberate acceleration-based design developed in the afore-
mentioned results of [4], [22], [23], [24], [25], [26], [27],
[28], [29], and [30] show improved performance and conver-
gence for a variety of deep-learning applications. However,
such results are offline methods in the sense that the DNN
parameters are learned by solving an optimization problem
with a training dataset. As mentioned previously, offline DNN
training approaches are ill-suited for the real-time control
application investigated in this article.

To build intuition on the acceleration phenomena from
higher-order algorithms, results in [31], [32], [33], and [34]
make connections between discrete-time accelerated gradi-
ent methods and continuous-time analogs. Motivated by
the improved convergence properties of accelerated gradient
methods, insights from [31], [32], [33], and [34] led to
the design and analysis of accelerated gradient algorithms
using Lyapunov-based methods [35], [36], [37], [38]. The
results in [35] develop an accelerated gradient-based adap-
tation scheme to estimate a system’s parametric uncertainty
in applications for model-reference adaptive control with
linear dynamics. However, the result in [35] only guaran-
tees asymptotic convergence in the tracking error while the
parameter estimation errors are only guaranteed to remain
bounded. Results in [36] develop a data-driven accelerated
gradient-based method to achieve convergence in the parame-
ter estimates, but this method is only applicable to parameter
estimation in linear regression models where a tracking objec-
tive is not considered. Moreover, the result in [36] requires
measurements of the regression error which is typically not
measurable in the context of adaptive control due to the
need for higher-order state derivatives. The results in [37]
and [38] generalize the accelerated gradient-based adaptation
to uncertain nonlinear systems. Results in [37] apply the varia-
tional framework in [32] to develop accelerated gradient-based
adaptation for general nonlinear systems. Results in [37] also
exploit connections between adaptive control and optimization,
which provides insights into adaptation design, by compar-

1First-order optimization methods are recursive difference equation driven
by a cost function’s gradient. Higher-order accelerated methods alter the
search direction by using a weighted sum from the previous iteration to add
a momentum-based term and accelerate convergence.

ing gradient- and mirror descent-based adaptation with and
without the accelerated gradient method. However, similar
to [35], the results in [37] only achieve asymptotic tracking
error convergence. The results in [38] develop a data-driven
accelerated gradient-based adaptation design to achieve expo-
nential stability in both the tracking and parameter estimation
objectives. Unlike [36], the results in [38] are developed
for general uncertain Euler–Lagrange systems. Moreover, the
need for direct measurements of the parameter estimation
error is eliminated by employing a torque-filtering method
that exploits algebraic relations in the system dynamics to
reconstruct a measurable form of the parameter estimation
error. Although the results in [35], [36], [37], and [38]
show improved performance from the accelerated-gradient-
based adaptation, the underlying assumption throughout the
aforementioned results require the system’s uncertainty to
satisfy the linear-in-the-parameters (LIP) assumption. Hence,
scenarios in which a system’s dynamics exhibits unstruc-
tured or unknown (non-LIP) uncertainties motivate the use of
NN-based adaptive control techniques.

In the conference version of this article in [39], the
accelerated gradient strategy is used to develop a neu-
ral network (NN)-based adaptive controller to compensate
for non-LIP model uncertainties. Specifically, an accelerated
gradient-based adaptation law is developed to estimate NN
weights in real time. However, the NN model considered
in [39] is limited to NNs with only a single hidden layer.
Building on our preliminary results, this article generalizes the
NN model to deep architectures with an arbitrary number of
hidden layers. In comparison to our preliminary results in [39],
this article generalizes the mathematical development, control
design, and stability analysis to account for DNN architec-
tures and unknown exogenous disturbances in the system
dynamics. Additionally, the literature review is broadened and
comprehensive simulation studies are conducted. In addition
to the two-state nonlinear system in [39], simulations were
performed on a robotic manipulator and a more complex 20-D
system. The simulation studies compare the developed method
into both baseline DNN and single hidden-layer NN adaptation
schemes.

In this article, a new DNN-based accelerated gradient adap-
tive controller is developed for trajectory tracking for general
nonlinear control-affine systems subject to non-LIP uncertain-
ties and exogenous disturbances. The constructive variational
framework in [32] is used to design higher-order accelerated
gradient-based adaptation laws for real-time estimation of all
the weights of the DNN. The higher-order adaptation scheme
is structured as two coupled first-order differential equations;
the first adaptation law is used to generate auxiliary estimates
of the DNN weights and these estimates are coupled to the
second adaptation law which alters the search direction of the
auxiliary estimates and adds acceleration to generate the true
DNN weight estimates. Despite the potential improvements
from the accelerated gradient strategy, the inherent coupled
structure poses mathematical challenges with Lyapunov-based
analysis. However, the perturbing effects resulting from the
cross-terms injected into the analysis by the accelerated
gradient-based adaptation strategy is compensated for by the
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developed control input design. Additionally, Lyapunov-based
analyses of the DNN-based adaptation poses challenges due
to the nested nonlinear parametrization of DNN architectures.
However, a recursive relation of the DNN architecture, similar
to [15], is developed to facilitate the analysis and derivation
of a general expression for the adaptation design that accounts
for general fully connected DNNs with an arbitrary number of
hidden layers. In comparison to [15], this article restructures
the analysis and control development to facilitate the derivation
of a general expression to compute the DNN adaptation law.
An example is also provided to show the utility of the general-
ized adaptation law. The switching analysis in [38] is adopted
in this article to allow for activation functions with discon-
tinuous gradients, for example, rectified linear unit (ReLU)
activation functions. A nonsmooth Lyapunov-based analysis
is used to analyze the new accelerated gradient-based DNN
adaptive control design. The tracking errors are guaranteed to
achieve global asymptotic tracking error convergence despite
the presence of non-LIP system uncertainties and exogenous
disturbances.

The remainder of this article is organized as follows.
Section II introduces the problem formulation and control
objective. Specifically, an uncertain control-affine nonlinear
system is considered and the control objective is to track
a user-defined trajectory subject to the system uncertainty.
Moreover, Section II introduces the DNN architecture used
in the developed DNN-based accelerated gradient adaptation
control scheme. Sections III–IV contain the new contributions
of this article. Specifically, Section III includes the designs for
the DNN-based adaptive controller and accelerated gradient
DNN weight adaptation laws. A nonsmooth Lyapunov-based
stability analysis is performed in Section IV to guarantee
the tracking objective is achieved. Comparative numerical
simulations are provided in Section V to demonstrate the
improved performance of the developed DNN-based accel-
erated gradient-based adaptation design. First, to show the
improved performance of the developed method, comparative
simulations are conducted on a two-state nonlinear system
and a practical robotic manipulator system with the same
DNN configuration (i.e., the same number of layers, neurons,
activation function, and initial weights). Then, a compre-
hensive simulation study is conducted on a more complex
20-D nonlinear system that compares various NN architectures
(varying hidden-layers and neurons) and adaptation schemes.
Additionally, an extension of the developed method to Euler–
Lagrange systems are provided in the Appendix.

II. PROBLEM FORMULATION

A. Mathematical Preliminaries

Let R and Z denote the set of real numbers and integers,
respectively. Let R≥0 ≜ [0, ∞) and R>0 ≜ (0, ∞) denote the
set of positive and strictly positive real numbers, respectively.
Similarly, let Z≥0 and Z>0 denote the set of positive and
strictly positive integers, respectively. The Euclidean norm of a
vector x ∈ Rn is denoted by ∥x∥ ≜

√
xT x . The vector space of

essentially bounded Lebesgue measurable functions is denoted
by L∞. For n, m ∈ Z>0, let Rn×m and In denote the space

of n × m dimensional matrices and the n × n dimensional
identity matrix, respectively. The right-to-left matrix product

operator is denoted by
↶∏

, that is, given suitable matrices

Ai for all i = 1, . . . , m,
↶∏m

i=1 Ai ≜ Am, . . . , A2 A1 and
↶∏m

i=a Ai ≜ I if a > m. Given matrices A ∈ Rp×q and B ∈

Rr×s , the Kronecker product is denoted by A ⊗ B ∈ Rpr×qs .
Let vec(·) denote the vectorization operator that transforms a
matrix into a column vector, that is, for a matrix A = [ai, j ] ∈

Rn×m , vec(A) ≜ [a1,1, . . . , a1,m, . . . an,1, . . . , an,m]
T

∈ Rnm .
Given matrices A ∈ Rk×l , B ∈ Rl×m , and C ∈ Rm×n ,
the vectorization operator satisfies the following property [40,
Proposition 7.1.9]:

vec (ABC) =

(
CT

⊗ A
)

vec (B) . (1)

B. Dynamic Model and Control Objective

Consider a control-affine nonlinear system modeled as

ẋ = f (x) + g (x) u + d (t) (2)

where x : R≥0 → Rn denotes the system state, f :

Rn
→ Rn denotes an unknown differentiable drift vector

field, g : Rn
→ Rn×m denotes a known control effectiveness,

d : R≥0 → Rn denotes an unknown exogenous disturbance,
and u : R≥0 → Rm denotes a control input. To facilitate the
subsequent stability analysis, the following assumptions are
made.

Assumption 1: The exogenous disturbance d(·) can be
bounded as ∥d(t)∥ ≤ d for all t ∈ R≥0, where d ∈ R>0
denotes a known constant.

Assumption 2: The control effectiveness matrix g(x) is full
row rank for all x ∈ Rn .

The control objective is to use an accelerated gradient
approach to design a DNN-based adaptive controller to track
a user-defined desired trajectory xd : R≥0 → Rn despite
uncertainty of the drift vector field in (2). Let the tracking
error e : R≥0 → Rn be defined as

e ≜ x − xd . (3)

The desired trajectory and its time derivative are assumed to
be continuous and bounded, that is, xd(t) ∈ �, for all t ∈ R≥0,
and ẋd ∈ L∞, where � ⊂ Rn denotes a known compact set.

C. DNN Architecture and Function Approximation

NN function approximation methods are well-suited for
systems with unknown or unstructured uncertainties, that is,
the uncertainty does not satisfy the typical LIP assumption
in adaptive control (see [41], [42], [43]). To compensate
for the unknown drift vector field in (2), a fully connected
DNN-based feedforward estimate of the drift vector field is
introduced in this section. Let the DNN architecture 8 :

Rn
× R

∑k
i=0(L i +1)L i+1 → RLk+1 be defined as

8 (s, θ) ≜
(

V T
k σk ◦ · · · ◦ V T

1 σ1

) (
V T

0 s
)

(4)

where s ≜ [sT , 1]
T

∈ RL0+1 denotes a concatenated state
input that is augmented by 1 to facilitate the inclusion of bias
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terms, θ ≜ [vec(Vk)
T , . . . , vec(V0)

T
]
T

∈ R
∑k

i=0(L i +1)L i+1

denotes a concatenated vector of the DNN hidden-layer
weights Vi ∈ R(L i +1)×L i+1 for all i ∈ {0, . . . , k}, where
k ∈ Z>0 denotes the number of hidden layers in the DNN,
L i ∈ Z>0 for all i ∈ {0, . . . , k + 1} denotes the number of
neurons in each hidden layer, and σi : RL i → RL i +1 for all
i ∈ {1, . . . , k} denotes a vector of activation functions. The
vector of activation functions can be composed of various
activation functions and hence may be represented as σi =

[ςL i , . . . , ς1, 1]
T for all i ∈ {1, . . . , k}, where ς j : R → R

for all j ∈ {1, . . . , L i } denotes a piecewise continuously
differentiable activation function.2 Note that for the subsequent
function approximation of the unknown drift vector field, the
input and output dimensions are defined as L0 ≜ Lk+1 ≜ n.

Let C(�) denote the space of continuous functions on the
set �. By the universal function approximation theorem in [44,
Th. 3.2], the function space of DNNs is dense in C(�). Then,
for any drift vector field f ∈ C(�) and prescribed function
reconstruction error bound ε ∈ R>0, there exist ideal DNN
weights θ∗ ≜ [vec(V ∗

k )T , . . . , vec(V ∗

0 )T
]
T

∈ R
∑k

i=0(L i +1)L i+1

and activation functions σi for all i ∈ {1, . . . , k} such that
supxd∈�∥ f (xd)−8(xd , θ∗)∥ ≤ ε. Then, the DNN architecture
in (4) models the unknown drift vector field in (2) as

f (xd) = 8
(
xd , θ∗

)
+ ε (xd) ∀xd ∈ � (5)

where ε : Rn
→ Rn denotes an unknown bounded func-

tion approximation error. The function approximation error is
bounded such that supxd∈�∥ε(xd)∥ ≤ ε. Since the ideal DNN
weights θ∗ are unknown, real-time adaptive weight estimates
θ̂ : R≥0 → R

∑k
i=0(L i +1)L i+1 are generated to develop a

DNN-based adaptive feedforward component 8(xd , θ̂ ), where
θ̂ ≜ [vec(V̂k)

T , . . . , vec(V̂0)
T
]
T . For brevity, the following

short-hand notations are introduced:

8∗ ≜ 8
(
xd , θ∗

)
, 8̂ ≜ 8

(
xd , θ̂

)
. (6)

The DNN weight estimation error θ̃ : R≥0 → R
∑k

i=0(L i +1)L i+1

is defined as

θ̃ (t) ≜ θ∗
− θ̂ (t) . (7)

To facilitate the subsequent stability analysis, the following
assumption is made.

Assumption 3 [45, Assumption 1]: The ideal DNN weights
can be bounded as ∥θ∗

∥ ≤ θ , where θ ∈ R>0 denotes a known
constant.

III. CONTROL DEVELOPMENT

This section introduces the DNN-based adaptive control
design. Section III-A introduces the closed-loop error sys-
tem resulting from the DNN-based adaptive controller. The
DNN 8̂ in (6) is used to develop an adaptive feedforward
term that compensates for the system uncertainty. Then, in
Section III-B, an accelerated gradient approach is used to
design an adaptation law for θ̂ in (6) that generates real-time
weight estimates for fully connected DNNs with an arbitrary
number of hidden layers.

2Some common choices in activation functions include the sigmoid, hyper-
bolic tangent, and ReLu activation functions.

A. Closed-Loop Error System

Based on the subsequent stability analysis, the control input
is designed as3

u ≜ g+ (x)
[
ẋd − βee − βssgn (e) − 8̂

− ρ (∥e∥) e + 28̂′

(
θ̂ − ν̂

)]
(8)

where βe, βs ∈ R>0 denote user-defined parameters, ν̂ :

R≥0 → R
∑k

i=0(L i +1)L i+1 denotes an auxiliary weight esti-
mate that is subsequently defined, sgn(·) denotes the signum
function, g+(x) ≜ gT (x)(g(x)g(x)T )−1 denotes the right
pseudo-inverse of g(x),4 and ρ : R≥0 → R≥0 denotes a known
strictly increasing function that satisfies ∥ f (x) − f (xd)∥ ≤

ρ(∥e∥)∥e∥ for all x, xd ∈ Rn [49, Lemma 5]. Taking the
time derivative of (3), adding and subtracting f (xd), and
substituting in (2) and (5), the open-loop error system can
be expressed as

ė = 8∗
+ ε (xd) + f (x) − f (xd) + d (t) − ẋd + g (x) u.

(9)

Substituting (8) into (9) yields the closed-loop error system

ė = −kee − kssgn (e) + 28̂′

(
θ̂ − ν̂

)
+ 8∗

− 8̂

+ ε (xd) + f (x) − f (xd) + d (t) − ρ (∥e∥) e. (10)

The first-order Taylor’s series approximation of 8∗ yields [45,
eq. (22)]

8∗
− 8̂ = 8̂′θ̃ +O2

(∥∥∥θ̃

∥∥∥)
(11)

where O2(·) denotes higher-order terms resulting from
the Taylor’s series approximation.5 Then, substituting (11)
into (10), the closed-loop error system can be expressed as

ė = −βee − βssgn (e) + 8̂′θ̃ + 28̂′

(
θ̂ − ν̂

)
− ρ (∥e∥) e + χ

(12)

where χ : Rn
×Rn

×R
∑k

i=0(L i +1)L i+1 ×R≥0 → Rn denotes an
auxiliary function defined as χ ≜ O2(∥θ̃∥) + ε(xd) + f (x) −

f (xd) + d(t).

B. Accelerated Gradient-Based Adaptation

This section applies the variational framework in [32] to
develop an accelerated gradient-based adaptation law that
generates real-time weight estimates for the DNN in (8). The
variational approach in [32] defines a Bregman–Lagrangian
function and uses principles from the calculus of variations
to generate a class of accelerated gradient update laws that
minimizes a cost functional. Similar to the approach in [32],

3The subsequent development is based on the use of the discontinuous
signum function, which could lead to a high-frequency response. Results such
as [46], [47], [48] could be used as a continuous alternative.

4By Assumption 2, the right pseudo-inverse x 7→ g+(x) exists for all
x ∈ Rn .

5Given suitable functions f and g, the notation f (x) = Ok (g(x)) means
that there exist constants c, x0 ∈ R>0 such that ∥ f (x)∥ ≤ c∥g(x)∥k for all
x ≥ x0.
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the Bregman–Lagrangian function L : R
∑k

i=0(L i +1)L i+1 ×

R
∑k

i=0(L i +1)L i+1 × R≥0 → R is defined as

L
(
θ̂ ,

˙̂
θ, t

)
= eα(t)+γ (t)

(
Dh

(
θ̂ + e−α(t) ˙̂

θ, θ̂
)

− eβ(t)E
(
θ̂
))

(13)

where α, β, γ : R≥0 → R denote arbitrary continuously
differentiable scaling functions, E : R

∑k
i=0(L i +1)L i+1 →

R denotes a user-defined loss function, and Dh :

R
∑k

i=0(L i +1)L i+1 × R
∑k

i=0(L i +1)L i+1 → R≥0 denotes the Breg-
man divergence defined as Dh(p, q) ≜ (1/2)∥q − p∥

2.6

The scaling functions in (13) are selected as α ≜ 0, β ≜
ln(γ1γ2), and γ (t) ≜ γ2t , where γ1, γ2 ∈ R>0 are user-
defined parameters [35], [37] (see [32]). Then, (13) can
be expressed as L (θ̂ ,

˙̂
θ, t) = eγ2t ((1/2)

˙̂
θT ˙̂

θ − γ1γ2 E(θ̂)).
Let a cost functional J : R

∑k
i=0(L i +1)L i+1 → R≥0 be

defined as J (θ̂) ≜
∫

L (θ̂ ,
˙̂
θ, τ )dτ . Then, by the calculus

of variations, the trajectories t 7→ θ̂ (t) that minimize the
cost functional J are the solutions of the Euler–Lagrange
equation (d/dt)((∂L /∂

˙̂
θ)(θ̂ ,

˙̂
θ, t)) − (∂L /∂θ̂)(θ̂ ,

˙̂
θ, t) = 0

[32, eq. (3)]. Then, computing the terms (∂L /∂
˙̂
θ), (∂L /∂θ̂),

and (d/dt)(∂L /∂
˙̂
θ) in the Euler–Lagrange equation yields

the adaptation law

¨̂
θ + γ2

˙̂
θ = −γ2γ1

∂

∂θ̂
E

(
θ̂
)

. (14)

Based on the subsequent stability analysis, the loss function
is defined as E(θ̂) ≜ (d/dt)((1/2)eT e). Using (12) yields

(∂ E/∂θ̂) = 8̂′T e, where 8̂′ ≜ (∂8̂/∂θ̂) ∈ Rn×
∑k

i=0(L i +1)L i+1 .
To facilitate the subsequent analysis, let γ1 ≜ γν and γ2 ≜
γνγθ , where γν, γθ ∈ R>0 are user-defined parameters. Then,
by defining an auxiliary weight estimate as ν̂ ≜ θ̂ + (1/γ2)

˙̂
θ ,

(14) can be expressed by two first-order differential equations
as

˙̂ν ≜ proj
(
γν8̂

′T e
)

(15)

˙̂
θ ≜ −proj

(
γνγθ

(
θ̂ − ν̂

))
(16)

where the operator proj(·) denotes the projection algorithm
defined in [41, eq. (E.2)] and is used in (15) and (16) to
ensure the weight estimates remain bounded in the subsequent
stability analysis, that is, ν̂(t), θ̂ (t) ∈ 2 for all t ∈ R≥0,
where 2 ≜ {θ ∈ R

∑k
i=0(L i +1)L i+1 : ∥θ∥ ≤ θ} denotes a known

convex set and θ is known by Assumption 3.
The term 8̂′ in (15) can be computed as follows. To facil-

itate the subsequent development, let σ̂i : RL i → RL i +1 be
defined recursively as

σ̂i ≜


σ1

(
V̂ T

0 xd

)
, i = 1

σi

(
V̂ T

i−1σ̂i−1

)
, i = 2, . . . , k.

(17)

Using (6) and the recursive relation in (17), the DNN
estimate 8̂ can be expressed as 8̂ = V̂ T

k σ̂k . Then, recalling

6The formulation in [32] considers a non-Euclidean setting and defines the
Bregman divergence as Dh(p, q) = h(p)−h(q)−∇h(q)T (p −q), where h :

R
∑k

i=0(Li +1)Li+1 → R≥0 denotes a distance-generating function. To obtain
the Bregman divergence function defined in this article, h(x) ≜ (1/2)∥x∥

2.

θ̂ = [vec(V̂k)
T , . . . , vec(V̂0)

T
]
T , 8̂′ can be expressed as

8̂′
=

 ∂8̂

∂vec
(

V̂k

) , . . . ,
∂8̂

∂vec
(

V̂0

)
 . (18)

Using the chain rule, the vectorization property in (1),
and the facts that (∂σ̂1/(∂vec(V̂0))) = σ̂ ′

1(IL1 ⊗ xT
d ) and

(∂σ̂i+1/(∂vec(V̂i ))) = σ̂ ′

i+1(IL i+1 ⊗ σ̂ T
i ) for all i = 1, . . . , k −

1, the terms in (18) can be computed as

∂8̂

∂vec
(

V̂i

) =




↶
k∏

j=1

V̂ T
j σ̂ ′

j

(
IL1 ⊗ xT

d

)
, i = 0


↶
k∏

j=i+1

V̂ T
j σ̂ ′

j

(
IL i+1 ⊗ σ̂ T

i

)
, i = 1, . . . , k

(19)

where σ̂ ′

1 ≜ (∂σ̂1/∂ V̂ T
0 xd) and σ̂ ′

i ≜ (∂σ̂i/∂ V̂ T
i−1σ̂i−1) for

i = 2, . . . , k. The adaptation law in (15), (18), and (19) are
expressed for fully connected DNNs with an arbitrary number
of hidden layers. To provide more insights, the following
example is provided.

Example 1: Consider the single-hidden-layer NN
8̂(xd , θ̂ ) = V̂ T

1 σ1(V̂ T
0 xd) (i.e., k = 1), where

V̂0 ∈ R(n+1)×L , V̂1 ∈ R(L+1)×n , L ∈ Z>0, and
θ̂ ≜ [vec(V̂1)

T , vec(V̂0)
T
]
T

∈ R2Ln+L+n . Then, using (18)
and (19), 8̂′ can be computed as

8̂′
=

[(
In ⊗ σ̂ T

1

)
, V̂ T

1 σ̂ ′

1

(
IL ⊗ xT

d

)]
. (20)

Using (20), the update law in (15) yields

˙̂ν = proj

γν

 (
In ⊗ σ̂ T

1
)T(

V̂ T
1 σ̂ ′

1
(
IL ⊗ xT

d
))T

 e

 . (21)

Defining ν̂ ≜ [vec(ν̂1)
T , vec(ν̂0)

T
]
T , using (1), and applying

some algebraic manipulation, (21) can be expressed as

˙̂ν1 = proj
(
γν σ̂1eT

)
(22)

˙̂ν0 = proj
(
γνxdeT V̂ T

1 σ̂ ′

1

)
. (23)

Remark 1: The DNN configuration in Example 1 is a spe-
cial case where there is only one hidden layer. For the special
case, the adaptation laws in (22) and (23) are equivalent to
the output- and inner-layer weight adaptation laws developed
in [45] for single-hidden-layer NNs. Hence, the adaptation
law developed in (15) can be interpreted as a gradient-based
adaptation law that has been generalized to fully connected
DNNs. However, the fundamental difference in the developed
method is that the adaptation law in (15) generates auxiliary
weight estimates. The auxiliary estimates are coupled to the
adaptation law in (16) which alters the search direction of the
auxiliary estimates to generate the true DNN weight estimates.

Remark 2: The adaptation law developed in (14) is depen-
dent on the selection of the loss function. The loss function
E = (1/2)(d/dt)(eT e), defined below (14), was selected
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based on the subsequent stability analysis and yields the adap-
tation laws in (15) and (16). It is well known that including
the weight estimation error θ̃ in the adaptation law design
can improve performance, and hence, including a term such
as (1/2)θ̃T θ̃ in the loss function can be beneficial. However,
including the weight estimation error in the adaptation design
poses challenges in the implementation because the weight
estimation error is unknown; therefore, selections in loss
functions that incorporate a measurable/computable form of
the weight estimation error may be a potential avenue for
future works.

IV. STABILITY ANALYSIS

The closed-loop control design introduced in Section III
employs a discontinuous robust sliding mode term and may
also have potential discontinuities in 8̂′ depending on the
choice of activation functions (e.g., ReLU activation func-
tions). As a result, the closed-loop system is nonsmooth
and does not admit classical solutions. Hence, a nons-
mooth Lyapunov-based analysis is used to analyze generalized
solutions of the resulting closed-loop system and ensure
the tracking objective is achieved [50] ([41, Th. A.8] for
LaSalle–Yoshizawa invariance principles for smooth nonau-
tonomous systems). Specifically, the switching analysis in [15]
for DNN-based adaptive control is adopted to model the
closed-loop system as a state-dependent switched system com-
posed of a finite collection of smooth functions.

To facilitate the subsequent analysis, let ϱ ∈ P denote a
switching index, where P ⊂ Z denotes a finite set of possible
switching indices. Then, the DNN function approximation
in (5) can be represented as f (xd) = 8∗

ϱ + εϱ(xd), where
xd 7→ 8∗

ϱ is smooth for each ϱ ∈ P with the corresponding
function reconstruction error εϱ(xd). Similarly, the function χ

defined below (12) can be represented by the switched function

χϱ ≜ O2
ϱ

(∥∥∥θ̃

∥∥∥)
+ εϱ (xd) + f (x) − f (xd) + d (t) (24)

which is continuous for each ϱ ∈ P . By the use of the
projection algorithm in (16), the DNN weight estimates can
be upper bounded as ∥θ̂ (t)∥ ≤ θ for all t ∈ R≥0. Hence,
by Assumption 3 and using (7), the DNN weight estimation
error can be bounded as ∥θ̃ (t)∥ ≤ 2θ for all t ∈ R≥0.
Moreover, since θ̃ ∈ L∞ and O2

ϱ is continuous in each ϱ ∈ P ,
it follows that O2

ϱ can be upper bounded by a known constant
for all ϱ ∈ P . The exogenous disturbance t 7→ d(t) is upper
bounded by a known constant by Assumption 1. The terms
f (x)− f (xd) can be bounded as ∥ f (x)− f (xd)∥ ≤ ρ(∥e∥)∥e∥
for all x, xd ∈ Rn [49, Lemma 5], where ρ(·) was previously
defined below (8). Then, χϱ can be upper bounded as∥∥χϱ

∥∥ ≤ c + ρ (∥e∥) ∥e∥ ∀ϱ ∈ P (25)

where c ∈ R>0 denotes a known constant and ρ (·) was defined
below (8).

Based on the development introduced above, the adaptation
law in (15) and the closed-loop error system in (12) can be
represented as

˙̂ν = proj
(
γν8̂

′T
ϱ e

)
∀ϱ ∈ P (26)

ė = −βee − βssgn (e) + 8̂′
ϱ θ̃

+ 28̂′
ϱ

(
θ̂ − ν̂

)
− ρ (∥e∥) e + χϱ ∀ϱ ∈ P. (27)

For notational brevity, let 9 ∈ Z>0 be defined as 9 ≜ n +

2
∑k

i=0(L i +1)L i+1. Let z ≜ [eT , (θ̂ − ν̂)T , (θ∗
− ν̂)T

]
T

∈ R9

denote a concatenated state, and let ż = hϱ(z, t) for all ϱ ∈ P
denote a collection of subsystems, where hϱ : R9

× R≥0 →

R9 . Then, the corresponding switched system is represented
as

ż = h p(z) (z, t) (28)

where z : R≥0 → R9 denotes a Filippov solution to (28),
p : R9

→ P denotes a state-dependent switching signal, and
hϱ(z, t) is defined as

hϱ (z, t) =


f cl
ϱ (z, t)

−proj
(
γνγθ

(
θ̂ − ν̂

))
− proj

(
γν8̂

′T
ϱ e

)
−proj

(
γν8̂

′T
ϱ e

)
 (29)

for all ϱ ∈ P , where f cl
ϱ : R9

× R≥0 → Rn is defined as
f cl
ϱ (z, t) ≜ −βee−βssgn(e)+8̂′

ϱ θ̃ +28̂′
ϱ(θ̂ − ν̂)−ρ(∥e∥)e+

χϱ. In the following theorem, nonsmooth Lyapunov-based
analysis techniques developed in [50] are used to establish
invariance properties of (28) to ensure the tracking objective
is achieved.

Theorem 1: Consider a system modeled as in (2) and
let Assumptions 1–3 hold. Then, the control input in (8)
and accelerated gradient-based DNN weight adaptation laws
in (15) and (16) ensure global asymptotic tracking in the
sense that limt→∞∥e(t)∥ = 0 and limt→∞∥θ̂ (t) − ν̂(t)∥ = 0,
provided the following sufficient gain condition is satisfied

βs > c (30)

where c is a known constant defined in (25).
Proof: Consider a candidate common Lyapunov function

VL : R9
→ R≥0 defined as

VL (z) ≜
1
2

eT e +
1

2γν

(
θ̂ − ν̂

)T (
θ̂ − ν̂

)
+

1
2γν

(
θ∗

− ν̂
)T (

θ∗
− ν̂

)
(31)

which satisfies the inequality α(∥z∥) ≤ VL(z) ≤ α(∥z∥),
where α, α : R≥0 → R≥0 are continuous positive definite
functions. Let Fϱ : R9 ⇒ R9 denote the Filippov regulariza-
tion of (28) and be defined as Fϱ ≜ K[hϱ](z, t), where the
calculus of K[·] is defined in [51] and the notation ⇒ denotes
a set-valued mapping. Then, the generalized time derivative
of (31) can be computed as ˙V L ≜ maxp∈∂VL (z)maxq∈F ′

ϱ(z) pT q
[50, Definition 3], where F ′

ϱ(z, t) ⊇ Fϱ(z, t) denotes a
bound on the regularization of (28), and ∂VL denotes Clarke’s
generalized gradient of VL [52, pp. 39]. Since z 7→ VL(z) for
all z ∈ R9 is continuously differentiable, ∂VL(z) = {∇VL(z)},
where {·} denotes a singleton set and ∇ denotes the gradient.
Additionally, the time derivative of VL exists for almost all

time, that is, V̇L(z(t))
a.e.
∈

˙V L(z(t)), where the notation
a.e.
(·)

denotes that the relation holds for almost all time.
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Taking the generalized time derivative of (31), using (7),
adding and subtracting θ̂T (1/γν)K[ ˙̂ν], and performing some
algebraic manipulation yields

˙V L = eT K [ė] +

(
θ̂ − ν̂

)T 1
γν

K
[
˙̂
θ
]

−

(
θ̃ + 2θ̂ − 2ν̂

)T 1
γν

K
[
˙̂ν
]
. (32)

Substituting (16), (26), and (27) into (32) yields

˙V L = eT (
−βee − βsK

[
sgn

]
(e) − ρ (∥e∥) e + K

[
χϱ

])
+ eT

(
K

[
8̂′

ϱ

]
θ̃ + 2K

[
8̂′

ϱ

] (
θ̂ − ν̂

))
−

(
θ̂ − ν̂

)T
K

[
proj

] (
γθ

(
θ̂ − ν̂

))
−

(
θ̃ + 2θ̂ − 2ν̂

)T
K

[
proj

] (
8̂′T

ϱ e
)

. (33)

Since χϱ and 8̂ϱ are continuous functions for each ϱ ∈ P ,
K[χϱ] = {χϱ}, and K[8̂′

ϱ] = {8̂′
ϱ} for all ϱ ∈ P . To bind

the terms that involve proj(·) in (33), [41, Lemma E.1.IV] is
invoked which states −r T 0proj(τ ) ≤ −r0τ for all r ∈ R ⊂

Rm , 0 ∈ Rm×m , and τ ∈ Rm , where 0 denotes a positive
definite matrix and R denotes a convex set. The use of the
projection algorithm in (15) and (16), the trajectories of ν̂(t)
and θ̂ (t), for all t ∈ R≥0, remain in the convex set 2 defined
below (16). By Assumption 3, the ideal DNN weights can
be bounded as ∥θ∗

∥ ≤ θ . Moreover, note that K[proj](τ )

computes the set of convex combinations of proj(τ ) and τ

at the points of discontinuity. Therefore, −r T 0K[proj](τ ) ≤

−r T 0τ , and hence, the terms with the proj(·) operator in (33)
can be upper bounded as

−

(
θ̂ − ν̂

)T
K

[
proj

] (
γθ

(
θ̂ − ν̂

))
≤ −γθ

(
θ̂ − ν̂

)T (
θ̂ − ν̂

)
(34)

−

(
θ̃ + 2θ̂ − 2ν̂

)T
K

[
proj

] (
8̂′

ϱe
)

≤ −

(
θ̃ + 2θ̂ − 2ν̂

)T
8̂′T

ϱ e

= −eT
(
8̂′

ϱ θ̃ + 28̂′
ϱ

(
θ̂ − ν̂

))
. (35)

Then using (25), (34), (35), and the facts that eT K[sgn](e) =

{∥e∥1} and −βs∥e∥1 ≤ −βs∥e∥, (33) can be upper bounded
as

˙V L
a.e.
≤ −βe ∥e∥2

− (βs − c) ∥e∥ − γθ

∥∥∥θ̂ − ν̂

∥∥∥2
. (36)

Provided the sufficient gain condition in (30) is satisfied, (36)
can be upper bounded as ˙V L

a.e.
≤ −βe∥e∥2

− γθ∥θ̂ − ν̂∥
2.

From (31) and the fact that ˙V L
a.e.
≤ 0, it follows that VL ∈ L∞,

which implies z ∈ L∞, and hence e, ν̂, θ̂ ∈ L∞. Using
(3), the fact that e, xd ∈ L∞ implies x ∈ L∞. Using (7),
the fact that θ∗, θ̂ ∈ L∞ implies θ̃ ∈ L∞. The fact that
xd , θ̂ ∈ L∞ implies 8̂, 8̂′

∈ L∞. Using (8), the fact that

x, ẋd , e, 8̂, 8̂′, θ̂ , ν̂ ∈ L∞ implies u ∈ L∞. Using (15), the
fact that 8̂′, e ∈ L∞ implies ˙̂ν ∈ L∞. Using (16), the fact that
θ̂ , ν̂ ∈ L∞ implies ˙̂

θ ∈ L∞. Invoking the LaSalle–Yoshizawa

theorem extension for nonsmooth systems in [50, Th. 2] yields
limt→∞∥e(t)∥ = 0 and limt→∞∥θ̂ (t) − ν̂(t)∥ = 0.

V. SIMULATIONS

In this section, comprehensive simulation studies were
conducted on various nonlinear systems to demonstrate the
performance of the developed accelerated DNN adaptive con-
trol scheme. In Section V-A, comparative simulations were
performed on a two-state nonlinear system. The simulation
results compare the baseline DNN adaptive scheme from
[15] to the developed method. Similarly, comparative sim-
ulations were performed on a two-link robotic manipulator
in Section V-B to demonstrate the application of the devel-
oped method on a practical system. Then, to provide a
comprehensive simulation study on a more complex 20-D
nonlinear system, comparative simulations were conducted
in Section V-C. The simulation study in Section V-C pro-
vides comparative simulations between the standard gradient
adaptive controller for single hidden-layer NNs developed
in [45], the baseline DNN adaptive scheme from [15], and
the developed method.

A. Two-State Nonlinear System

Two comparative simulations were conducted on a two-
state nonlinear system to demonstrate the performance of the
developed method. The unknown drift vector field in (2) was
modeled as [39]

f (x) =

[
−x1 + x2

−
1
2

x1 −
1
2

x2

(
1 − (cos (2x1) + 2)2

) ]
(37)

where x ≜ [x1, x2]
T

∈ R2 denotes the system state. The
control effectiveness was modeled as g = I2. The exogenous
disturbance in (2) was modeled as random noise drawn from
the distribution N (0, 1). Each simulation was conducted for
30 s with initial condition x(0) = [5.0, 7.0]

T . The desired
trajectory xd ≜ [xd,1, xd,2]

T was selected as xd(t) =

[
sin(t)
cos(t)

]
for all t ∈ R≥0. The DNN used in both simulations was
configured with L = 10 neurons in each of the k = 5 hidden
layers. The hyperbolic tangent activation function was used
across all layers. The first simulation was performed with
a baseline DNN adaptive controller which used a typical
gradient-based scheme given by [15]

u ≜ ẋd − βee − βssgn (e) − 8̂ − ρ (∥e∥) e (38)
˙̂
θ ≜ proj

(
γθ 8̂

′T e
)

(39)

where e ≜ [e1, e2]
T , θ̂ ≜ [vec(V̂5)

T , . . . , vec(V̂0)
T
]
T , and

8̂′ was computed using (18) and (19). The second simula-
tion was performed with the developed method in (8), (15),
and (16). The bound for the projection operator was selected
as θ = 1000. The robust state feedback term ρ(∥e∥) in (8)
was designed as 0.1(∥e∥ + ∥e∥2) in both simulations were
omitted to better focus on the performance resulting from the
DNN-based adaptive terms. The DNN weight estimates θ̂ (0)

(and also ν̂(0) in the second simulation) were initialized ran-
domly from the normal distribution N (0, 1). The controllers in
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TABLE I
CONTROLLER CONFIGURATION

TABLE II
RMS TRACKING ERROR, CONTROL EFFORT, AND FUNCTION

APPROXIMATION ERROR

Fig. 1. Evolution of the normalized tracking errors ∥e∥ for the two-state
system. The simulation with the gradient-based DNN adaptation scheme
in (38) and (39) is shown as a red dashed line, and the simulation using
the developed accelerated gradient-based DNN adaptation scheme in (15)
and (16) is shown as a blue solid line. The tracking errors are shown over
a 10-s window rather than the entirety of the simulation to better exhibit the
transient performance. Additionally, an inset of the simulation from 0 to 5 s
is provided. Note the y-axis on the inset is on a logarithmic scale.

each simulation were configured similarly and are summarized
in Table I.

Table II summarizes the performance in each simula-
tion. In the leftmost column, e, u, and f̃ denote the root
mean square (rms) tracking error, control effort, and func-
tion approximation error, respectively. As shown in Fig. 1,
the tracking errors converge toward the origin. The tracking
errors using the baseline DNN adaptive controller in the
first simulation converged to a neighborhood of the origin
after approximately 5.4 s, whereas the tracking errors using
the developed method converged after approximately 0.7 s.
The rms tracking error for the baseline DNN and developed
methods were 0.0851 and 0.0277, respectively. The developed
method had a 67.41% decrease in the rms tracking error with
a 39.12% decrease in the rms control effort in comparison to
the baseline DNN adaptive method.

Fig. 2. Evolution of the normalized function approximation errors
∥ f (xd ) − f̂ (xd )∥ for each simulation of the two-state system. Additionally,
an inset of the simulation from 0 to 5 s is provided. Note the y-axis on the
inset is on a logarithmic scale.

Fig. 3. Evolution of the DNN weight estimates in each simulation of
the two-state system. Each of the corresponding weights was initialized at
the same initial condition. To better exhibit the performance in the weight
estimates, for both simulations, only 15 of the DNN weight estimates are
shown over a 10-s window rather than the entirety of the simulation.

Fig. 2 illustrates the normalized function approximation
error for each simulation. The simulation with the devel-
oped method showed a 78.82% decrease in the rms function
approximation error in comparison to the simulation with
the baseline DNN adaptive controller. To better illustrate the
improved transient performance from the developed acceler-
ated gradient-based adaptation design, Fig. 3 illustrates the
evolution of the DNN weight estimates. The weight estimates
from the baseline DNN adaptation exhibited oscillatory behav-
ior which degraded the tracking and function approximation
performance. As seen at approximately 3.9 s, and many other
instances throughout the simulation, many of the weights in
the baseline simulation had oscillations which resulted in
increases to the tracking and function approximation errors
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shown in Figs. 1 and 2, respectively. In comparison, the
weight estimates from the developed method had improved
transient performance as seen by the rapid convergence in
the weight estimates and function approximation error after
approximately 1.1 s.

B. Two-Link Robotic Manipulator

Similar to Section V-A, two comparative simulations were
performed on a two-link planar revolute robot. The robot was
modeled by the uncertain Euler–Lagrange dynamics7

M (q) q̈ + Vm (q, q̇) q̇ + Fq̇ = τ (40)

where q ≜ [q1, q2]
T

∈ R2, q̇ ∈ R2, and q̈ ∈ R2 denote
the angular position, velocity, and acceleration of each joint,
respectively, M(q) ∈ R2×2 represents the inertia matrix,
Vm(q, q̇) ∈ R2×2 represents the centripetal–Coriolis matrix,
F ∈ R2×2 represents friction effects, and τ ∈ R2 denotes the
torque inputs. In (40), the dynamics were modeled as [53]

M (q) =

[
p1 + 2p3c2, p2 + p3c2
p2 + p3c2, p2

]
(41)

Vm (q, q̇) =

[
−p3s2q̇2, −p3s2 (q̇1 + q̇2)

p3s2q̇1, 0

]
(42)

F =

[
f1, 0
0, f2

]
(43)

where c2 denotes cos(q2), s2 denotes sin(q2), and the nominal
parameters of the two-link robot model in (41)–(43) were p1 =

3.473, p2 = 0.196, p3 = 0.242, f1 = 5.3, and f2 = 1.1. The
desired trajectory qd(t) ≜ [qd,1, qd,2]

T
∈ R2 was selected as

qd ≜ (1 − exp(−0.1t))
[

(50π/180) sin((π/2)t)
(50π/180) sin((π/2)t)

]
∈ R2 [rad] for

all t ∈ R≥0. Each simulation was performed for 45 s with
the initial conditions q(0) = [1.2217,−0.5236]

T [rad] and
q̇(0) = [0, 0]

T [rad/s]. The DNN used in both simulations
was configured similarly as in Section V-A (see hidden layers,
neurons, and activation function in Table I). The DNN weight
estimates θ̂ (0) (and also ν̂(0) in the second simulation) were
initialized randomly from the normal distribution N (0, 10).
The first simulation was performed with the baseline DNN
adaptive scheme given by [15]8

τ ≜ βrr + e + 8̂ + βssgn (r) + ρ (∥y∥) ∥y∥ sgn (r) (44)
˙̂
θ ≜ proj

(
γθ 8̂

′T r
)

(45)

where e, r ∈ R2 denote the tracking and filtered tracking
errors defined in (47) and (48), respectively, y ≜ [eT , r T

]
T

∈

R4 denotes a concatenated state vector, ρ(∥y∥) ≜ 0.1 +

0.1∥y∥ + 0.1∥y∥
2, and βr ∈ R>0 denotes a user-defined

control parameter. The parameters in the first simulation were
selected as βr = 40, βs = 3, γθ = 15, and α = 15. The second
simulation was performed with the accelerated DNN adaptive
scheme in (51)–(53). The parameters in the second simulation
were selected as βr = 40, βs = 3, γθ = 10, γν = 0.2 and
α = 15.

7See Appendix for an extension of the developed method to Euler–Lagrange
systems.

8The DNN adaptive control scheme in [15] applies to nonlinear sys-
tems described by (2). The development and analysis on the extension to
Euler–Lagrange systems in the Appendix can be used to derive (44) and (45).

TABLE III
RMS TRACKING ERROR, CONTROL EFFORT, AND FUNCTION

APPROXIMATION ERROR

Fig. 4. Evolution of the normalized tracking errors ∥e∥ for the robotic
manipulator. The simulation with the gradient-based DNN adaptation scheme
in (44) and (45) is shown as a red dashed line, and the simulation using the
developed accelerated gradient-based DNN adaptation scheme in (51)–(53)
is shown as a blue solid line. The tracking errors are shown over a 10-s
window rather than the entirety of the simulation to better exhibit the transient
performance. Additionally, an inset of the simulation from 0 to 3 s is provided.

Table III summarizes the results in each simulation with the

robotic manipulator. In the leftmost column, e, τ , and f̃ denote
the rms tracking error, control effort, and function approx-
imation error, respectively. The developed method showed
improvements in the tracking objective, control effort, and
function approximation in comparison to the baseline DNN
adaptive scheme. Fig. 4 illustrates the normalized function
approximation error for each simulation. The tracking errors
using the developed method converge to a neighborhood of
the origin in approximately 1.2 s, whereas the baseline DNN
controller converges in approximately 1.8 s. In comparison
to the baseline DNN controller, the rms tracking error using
the developed method decreased by 33.31% with 14.59% less
control effort. Additionally, the developed method showed a
17.75% improvement in terms of the function approximation
errors. The improved function approximation by the developed
method is attributed to the weight adaptation which is illus-
trated in Fig. 5. As seen in the top of Fig. 5, many of the
weight estimates using the baseline DNN controller exhibited
large oscillations during the transient period approximately
from 0 to 1.8 s. In comparison, the weight estimates using
the developed method at the bottom of Fig. 5 exhibited
better transient performance with milder oscillations. From
approximately 0.2–0.4 s, many of the weights in the top of
Fig. 5 oscillate from magnitudes of approximately 30–74.
The effects of the weight estimate oscillations on the tracking
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Fig. 5. Evolution of the DNN weight estimates in each simulation of the
robot manipulator. Each of the corresponding weights was initialized at the
same initial condition. To better exhibit the transient performance in the weight
estimates, for both simulations, the estimates are shown over a 5-s window
rather than the entirety of the simulation.

error are evident as the tracking errors during the transient
period are higher using the baseline DNN adaptive scheme.
Corresponding to one of the peak oscillations, in Fig. 4, at
approximately 0.4 s, the normalized tracking error using the
baseline DNN scheme is 34.87◦, whereas the error using the
developed method was 21.79◦.

C. Comprehensive Case Studies on 20-D Nonlinear System

In this section, a comprehensive simulation study was
conducted on a more complex 20-D nonlinear system. The
unknown drift vector field in (2) with n = 20 dimensions
was modeled as f (x) = Aφ(x), where A ∈ Rn×6n was a
random matrix, and the nonlinear function φ : Rn

→ R6n

was defined as9 φ(x) ≜ [1T
n×1, xT , (x ⊙ x)T , (x ⊙ x ⊙

x)T , tanh(c1x), sin(c2x)]T . The entries ai, j of the random
matrix A were drawn from the normal distributionN (0, 1) and
the constants c1 and c2 were drawn from N (0, 1). The desired
trajectory was selected as xd(t) = [sin(t), . . . , sin(t)]T

∈ Rn .
1) Configurations: The simulation studies in this section

were performed on two cases. In the first case (Case 1),
to demonstrate the performance of both the acceleration strat-
egy and DNN architectures, comparative simulations were
conducted between three different NN-based adaptive con-
trollers: the standard gradient adaptive controller for single
hidden-layer NNs developed in [45], the baseline DNN adap-
tive scheme from [15], and the developed method in this
article. The single hidden-layer NN-based adaptive controller
is a special case of the baseline DNN controller in (38)
and (39), where the NN architecture 8̂ has k = 1 hidden
layers. Two sets of simulations with different NN configura-
tions were performed with the single hidden-layer NN adaptive
controller: one set of simulations was configured with a single
neuron (will be referred to as SHL NN 1), and the other had
5 neurons (SHL NN 2). Similar to Section V-A, the baseline

9The operator ⊙ denotes the element-wise product operator. For example,
given vectors u = [u1, . . . , un ]

T
∈ Rn and u = [v1, . . . , vn ]

T
∈ Rn , the

element-wise product u ⊙ v = [u1v1, . . . , unvn ]
T .

Fig. 6. Evolution of the normalized tracking error ∥e∥ for the 20-D system
in Case 1. The lines labeled “SHL NN 1” and “SHL NN 2” represent the
simulations with an SHL NN adaptive controller, the line labeled “DNN 1”
represents the baseline gradient-based adaptation scheme in (38) and (39), and
the line labeled “A-DNN 1” represents the accelerated gradient-based DNN
adaptation scheme in (15) and (16). To better illustrate the results visually,
the tracking errors are shown over a 20-s window rather than the entirety
(45 s) of the simulation, only 3 out of 25 simulations for each simulation
configuration are shown, and the data points were downsampled.

DNN adaptive scheme used is shown in (38) and (39), and
the developed method is in (8), (15), and (16). For both the
baseline DNN adaptation scheme and the developed method,
a set of simulations was conducted with DNNs configured
with 5 layers and 1 neuron in each layer (i.e., k = 5 and
L i = 1 for i = 1, . . . , k), and each of these sets of simulations
will be referred to as DNN 1 and A-DNN 1, respectively. For
each set of simulations (SHL NN 1, SHL NN 2, DNN 1, and
A-DNN 1), 25 simulations were conducted for 45 s where each
simulation had varying random initial conditions, that is, in
every simulation, the NN weights and states were randomized
from the normal distribution N (0, 1). Note that between all
simulation configurations (i.e., between SHL NN 1, SHL
NN 2, DNN 1, and A-DNN 1), the initial states were ini-
tialized at the same random initial conditions. The simulation
configurations (NN architectures and controller parameters)
are summarized in Table IV. Similarly, in the second case
(Case 2), comparative simulations between the baseline DNN
adaptive controller and the developed method was conducted
for various DNN configurations, that is, the number of layers
and neurons. The methodology of the simulation studies in
Case 2 are similar to Case 1, and the configurations of each
set of simulations is summarized in Table IV.

2) Results and Discussion: Table V summarizes the results
of Case 1 with the 20-D nonlinear system. Fig. 6 illustrates
the normalized tracking errors for a representative subset
of simulations from each of the configurations. Addition-
ally, Fig. 7 illustrates the normalized function approximation
error for each configuration. Case 1 demonstrates the perfor-
mance benefits of leveraging the DNN architectures and the
accelerated gradient adaptation developed in this article. The
simulations in SHL 2 demonstrate adding more neurons in
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TABLE IV

CONTROLLER CONFIGURATIONS†

TABLE V
CASE 1 RESULTS: AVERAGE TRACKING ERROR, CONTROL EFFORT, AND

FUNCTION APPROXIMATION ERROR†

Fig. 7. Evolution of the normalized function approximation errors
∥ f (xd ) − f̂ (xd )∥ for the 20-D system in Case 1. To better illustrate the
results visually, only 3 out of 25 simulations for each simulation configuration
is shown.

a hidden layer degraded the function approximation perfor-
mance. The function approximation performance was 21.30%
higher compared to SHL 1. Although the tracking perfor-
mance in SHL 2 improved by 9.78%, the improvement is not
indicative of better overall performance. As seen in Fig. 6, the
tracking error exhibited high oscillatory behavior with larger
amplitude errors throughout the simulations. For example,
approximately from 1 to 3 s, the tracking errors resided
at approximately 0.05 and then drastically increased to 0.9,
which occurred throughout the simulations in correspondence
to the poor function approximation. Alternatively, with the
DNN architectures, both the DNN 1 and A-DNN 1 simulation

Fig. 8. (a) and (c) Evolutions of the normalized tracking and function
approximation errors for the 20-D system in Case 2 for the DNN 2 and
A-DNN 2 configurations. Similarly, (b) and (d) illustrate the normalized
tracking and function approximation errors for DNN 3 and A-DNN 3.
To better illustrate the results visually, the tracking errors are shown over
a 20-s window rather than the entirety (45 s) of the simulation and only 3 out
of 25 simulations for each simulation configuration are shown.

sets outperformed SHL NN 1 and SHL NN 2. The tracking
performance in DNN 1 improved by 11.54% and 2.28%
in comparison to SHL NN 1 and SHL NN 2, respectively.
Similarly, in terms of the function approximation performance,
DNN 1 improved by 45.84% and 55.35%, respectively. These
results demonstrate the benefits of DNN architectures and
their improved function approximation capabilities. In the final
simulation set of Case 1, A-DNN 1 demonstrates the benefits
of leveraging both DNN architectures along with accelerated
gradient adaptation. In comparison to DNN 1, the tracking
and function approximation errors improved by 6.40% and
14.31%.

The simulation study results for Case 2 are summarized in
Table VI. The normalized tracking and function approximation
errors are shown in Fig. 8(a) and (c), respectively, for both for
simulations with DNN 2 and A-DNN 2. Similarly, DNN 3 and
A-DNN 3 are shown in Fig. 8(b) and (d). In both the simula-
tion sets with A-DNN 2 and A-DNN 3, tracking and function
approximation performance improved in comparison to DNN
2 and DNN 3, respectively. In comparison to DNN 2, the
tracking and function approximation performance improved by
0.47% and 15.75%, respectively. A-DNN 3 performed the best
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TABLE VI
CASE 2 RESULTS: AVERAGE TRACKING ERROR, CONTROL EFFORT, AND

FUNCTION APPROXIMATION ERROR

overall. In terms of tracking performance, A-DNN 3 improved
by 2.33%, 7.81%, and 1.86% compared to DNN2, DNN3,
and A-DNN 2, respectively. Moreover, in terms of function
approximation performance, A-DNN 3 improved by 31.49%,
12.79%, and 15.74%.

Overall, the case studies conducted in this section demon-
strate the performance improvements from DNN architectures
and the developed accelerated gradient adaptation strategy. The
study in Case 1 had a single hidden-layer NN scheme as the
baseline and examined the effects of altering the NN architec-
ture by adding more neurons in a hidden-layer and also adding
more hidden layers. DNN architectures improved performance
in comparison to shallow NNs. Leveraging the accelerated
gradient strategy in tandem with DNN architectures showed
the best overall performance. Similarly, the developed method
improved performance in corresponding sets of experiments in
Case 2 where different DNN architectures were compared with
the baseline DNN adaptation against the developed method.
Despite the improvement in the corresponding simulation sets,
when cross-comparing A-DNN 2 to DNN 3, DNN 3 out-
performed A-DNN 2 by 2.95% in function approximation.
The primary difference between the simulations is the DNN
configurations, where DNN 3 had more hidden layers. Hence,
the DNN architecture and adaptation designs are independent
attributing factors to performance. The developed method in
this article focuses on adaptation for arbitrary fully-connected
DNNs. Constructive methods for other DNN architectures in
adaptive control may be an avenue for future research efforts.

VI. CONCLUSION

Recent connections in adaptive control to continuous-time
analogs of accelerated gradient methods have led to the devel-
opment of new real-time adaptation laws based on accelerated
gradient methods. Motivated by the potential improvements in
transient performance, an accelerated gradient approach was
used to design an accelerated gradient-based DNN adaptive
control scheme for trajectory tracking of uncertain nonlinear
systems. A nonsmooth Lyapunov-based analysis was per-
formed to show the developed methods yield global asymptotic
tracking. Comprehensive simulation studies were conducted on
a two-state nonlinear system, a two-link robotic manipulator,
and a complex 20-D nonlinear system to demonstrate the
improved performance from accelerated gradient-based DNN
weight adaptation laws. The simulations of the two-state
system showed the developed accelerated gradient-based adap-
tation outperformed the baseline gradient-based DNN adaptive
scheme from [15] and had a 67.41% and 78.82% decrease in

the rms tracking and function approximation errors, respec-
tively. Similarly, the simulations on the robotic manipulator
showed a 33.31% and 17.75% improvement. In the simulation
with the 20-D system, comparative studies were conducted to
investigate the effects of various NN architectures (varying
number of hidden layers and neurons) and adaptation laws.
In all cases, the DNN-based accelerated gradient method
demonstrated improved tracking and function approximation
performance.

Future work may involve analyzing new adaptation designs
from the selection of the loss function in (14). As discussed
in Remark 2, selecting a loss function that incorporates
computable versions of the function approximation error in
the adaptation design may improve performance. However,
there are challenges in the analysis and implementation of
such adaptation laws due to the unknown nature of the ideal
DNN weights. Additionally, our findings in the case study in
Section V-C indicate the selection of the DNN architecture
is a contributing factor to performance. The developments in
this article focus on adaptation laws given a class of fully
connected DNNs with an arbitrary width and depth. Therefore,
future research avenues may consider constructive methods
(e.g., neural architecture search [54]) to generate an effi-
cient DNN architecture for the adaptive controller. However,
challenges will arise in developing stability-driven adaptation
laws that are agnostic to varying DNN architectures (e.g.,
ResNets, convolutional NNs, and recurrent NNs) as the DNN
architecture—along with the type of adaptation strategy—is
embedded within the stability analysis.

APPENDIX

Consider a general uncertain Euler–Lagrange system mod-
eled as [55, Ch. 2]

M (q) q̈ + Vm (q) q̇ + F (q̇) + G (q) = τ (46)

where q, q̇, q̈ : R≥0 → Rn denotes the generalized position,
velocity, and acceleration, respectively, M : Rn

→ Rn×n

denotes a generalized inertia matrix, Vm : Rn
× Rn

→ Rn×n

denotes a generalized centripetal–Coriolis matrix, G : Rn
→

Rn represents a generalized vector of potential forces, F :

Rn
→ Rn×n represents generalized dissipation effects, and

τ : R≥0 → Rn denotes the control input. The subsequent
development is based on the assumption that q and q̇ are mea-
surable. The model in (46) satisfies the following properties
and assumption.

Property 1: The inertia matrix M(q) for all q ∈ Rn is
positive-definite and satisfies m1∥ξ∥

2
≤ ξ T M(q)ξ ≤ m2∥ξ∥

2

for all ξ ∈ Rn , where m1, m2 ∈ R>0 denote known constants.
Property 2: The inertia and centripetal-Coriolis matrices

satisfy the following skew-symmetric relation ξ T (Ṁ(q) −

2Vm(q, q̇))ξ = 0 for all q, q̇, ξ ∈ Rn .
Assumption 4 [56], [57]: The matrices M(q), Vm(q, q̇),

G(q), and F(q̇) are bounded for all q, q̇ ∈ L∞.
To quantify the tracking objective, the tracking error e :

R≥0 → Rn and auxiliary tracking error r : R≥0 → Rn are
defined as

e ≜ qd − q (47)
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r ≜ ė + αe (48)

respectively, where α ∈ R≥0 denotes a user-defined parameter.
To facilitate the subsequent analysis, taking the time

derivative of r , pre-multiplying by M(q), using (46)
and (48), and adding and subtracting the terms
M(qd)q̈d , Vm(qd , q̇d)q̇d , and F(q̇d) yields the open-loop
error system

M (q) ṙ = g (ζd) − τ − Vm (q, q̇) r + N (q, q̇, qd , q̇d , q̈d)

(49)

where ζd ≜ [qT
d , q̇T

d , q̈T
d ]

T
∈ R3n denotes a concatenated

state vector, the function g : R3n
→ Rn denotes the

unknown system dynamics defined as g(ζd) ≜ M(qd)q̈d +

Vm(qd , q̇d)q̇d + F(q̇d), and the auxiliary function N : R5n
→

Rn is defined as N (q, q̇, qd , q̇d , q̈d) ≜ αM(q)ė + (M(q) −

M(qd))q̈d + (Vm(q, q̇) − Vm(qd , q̇d))q̇d + F(q̇ − q̇d) +

Vm(q, q̇)αe. By the universal function approximation property,
the DNN architecture in (4) is used to approximate the system
uncertainties in (49) as

g (ζd) = 8
(
ζd , θ∗

)
+ ε (ζd) ∀ζd ∈ � (50)

where 8, θ∗, ε, and � were previously defined in Section II-C.
Based on the subsequent stability analysis and following the
development in Section III, the control input and adaptation
laws are designed as

τ ≜ βrr + e + 8̂ + βssgn (r) + ρ (∥y∥) ∥y∥ sgn (r)

− 28′

(
θ̂ − ν̂

)
(51)

˙̂ν ≜ proj
(
γν8̂

′T r
)

(52)

˙̂
θ ≜ −proj

(
γνγθ

(
θ̂ − ν̂

))
(53)

where y : R≥0 → R2n denotes a concatenated state vector
defined as y ≜ [eT , r T

]
T . Substituting (50) and (51) into (49)

and using (11) yields the closed-loop error system

M (q) ṙ = 8̂′θ̃ − βrr − e − βssgn (r) − ρ (∥y∥) ∥y∥ sgn (r)

+ 28′

(
θ̂ − ν̂

)
− Vm (q, q̇) r + Ñ (54)

where Ñ ≜ N + ε(ζd) + O2(∥θ̃∥). By Assumption 4, it can
be shown that Ñ can be bounded as∥∥∥Ñ

∥∥∥ ≤ a0 + ρ (∥y∥) ∥y∥ (55)

where a0 ∈ R>0 denotes a known constant, and ρ : R≥0 →

R≥0 denotes a known positive definite and nondecreasing
function. The following theorem analyzes the closed-loop error
system in (54).10

Theorem 2: Consider a system modeled as in (46) that
satisfies Properties 1 and 2. Let Assumption 3 and 4 hold.
Then, the control input in (51) and accelerated gradient-based
DNN weight adaptation laws in (52) and (53) ensure global
asymptotic tracking in the sense that limt→∞∥e(t)∥ = 0,
limt→∞∥r(t)∥ = 0, and limt→∞∥θ̂ (t) − ν̂(t)∥ = 0, provided

10The switched system development in (24)–(28) trivially extends to the
extension to Euler–Lagrange systems. For brevity of exposition, the switched
system development is excluded in the extension.

the sufficient gain condition βs > a0 is satisfied, where a0 is
a known constant defined in (55).

Proof: Consider the candidate Lyapunov function VL :

R2n+2
∑k

i=0(L i +1)L i+1 → R≥0 defined as

VL (ξ) ≜
1
2

r T Mr +
1
2

eT e +
1

2γν

(
θ̂ − ν̂

)T (
θ̂ − ν̂

)
+

1
2γν

(
θ∗

− ν̂
)T (

θ∗
− ν̂

)
(56)

which satisfies the inequality α(∥ξ∥) ≤ VL(ξ) ≤ α(∥ξ∥),
where α, α : R≥0 → R≥0 are continuous positive definite
functions, and ξ : R≥0 → R2n+2

∑k
i=0(L i +1)L i+1 denotes a con-

catenated state vector defined as ξ ≜ [r T , eT , (θ̂ − ν̂)T , (θ∗
−

ν̂)T
]
T

∈ R2n+2
∑k

i=0(L i +1)L i+1 . Taking the generalized time
derivative of (56),11 performing some algebraic manipulation,
using (7), (48), (52)–(55) and Property 2 yields

˙V L
a.e.
≤ −βr ∥r∥

2
− α ∥e∥2

− γθ

∥∥∥θ̂ − ν̂

∥∥∥2
(57)

provided the sufficient gain condition βs > a0 is satisfied.
Then, invoking the LaSalle–Yoshizawa theorem extension for
nonsmooth systems in [50, Th. 2] yields limt→∞∥r(t)∥ = 0,
limt→∞∥e(t)∥ = 0, and limt→∞∥θ̂ (t) − ν̂(t)∥ = 0. Addition-
ally, all closed-loop signals can be shown to be bounded by
following the analysis in the proof of Theorem 1.
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[17] M. Krstić, P. V. Kokotović, and I. Kanellakopoulos, “Transient-
performance improvement with a new class of adaptive controllers,”
Syst. Control Lett., vol. 21, no. 6, pp. 451–461, Dec. 1993.

[18] T. E. Gibson, A. M. Annaswamy, and E. Lavretsky, “On adaptive
control with closed-loop reference models: Transients, oscillations, and
peaking,” IEEE Access, vol. 1, pp. 703–717, 2013.

[19] Y. E. Nesterov, “A method for solving the convex programming prob-
lem with convergence rate O

(
1
k

2)
,” Sov. Math. Doklady, vol. 269,

pp. 543–547, Jun. 1983.
[20] B. T. Polyak, “Some methods of speeding up the convergence of iteration

methods,” USSR Comput. Math. Math. Phys., vol. 4, no. 5, pp. 1–17,
Jan. 1964.

[21] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course, vol. 87. Cham, Switzerland: Springer, 2003.

[22] B. Wang and Q. Ye, “Improving deep neural networks’ training
for image classification with nonlinear conjugate gradient-style adap-
tive momentum,” IEEE Trans. Neural Netw. Learn. Syst., pp. 1–13,
Mar. 2023.

[23] H. Ye, C. He, and X. Chang, “Accelerated distributed approximate
Newton method,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no.
11, Nov. 2023.

[24] W. Tao, G.-W. Wu, and Q. Tao, “Momentum acceleration in the indi-
vidual convergence of nonsmooth convex optimization with constraints,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 3, pp. 1107–1118,
Mar. 2022.

[25] H. Li, H. Cheng, Z. Wang, and G.-C. Wu, “Distributed Nesterov gradient
and heavy-ball double accelerated asynchronous optimization,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 32, no. 12, pp. 5723–5737,
Dec. 2021.

[26] H. Ye, L. Luo, and Z. Zhang, “Accelerated proximal subsampled Newton
method,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 10,
pp. 4374–4388, Oct. 2021.

[27] H. Wang, Y. Luo, W. An, Q. Sun, J. Xu, and L. Zhang, “PID controller-
based stochastic optimization acceleration for deep neural networks,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 12, pp. 5079–5091,
Dec. 2020.

[28] W. Tao, Z. Pan, G. Wu, and Q. Tao, “The strength of nesterovs
extrapolation in the individual convergence of nonsmooth optimization,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 7, pp. 2557–2568,
May 2020.

[29] H. Zhang, J. Qian, J. Gao, J. Yang, and C. Xu, “Scalable proximal
Jacobian iteration method with global convergence analysis for noncon-
vex unconstrained composite optimizations,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 30, no. 9, pp. 2825–2839, Sep. 2019.

[30] D. Chang, S. Sun, and C. Zhang, “An accelerated linearly convergent
stochastic L-BFGS algorithm,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 30, no. 11, pp. 3338–3346, Nov. 2019.

[31] W. Su, S. Boyd, and E. J. Candes, “A differential equation
for modeling Nesterov’s accelerated gradient method: Theory and
insights,” J. Mach. Learn. Res., vol. 17, no. 1, pp. 5312–5354,
2016.

[32] A. Wibisono, A. C. Wilson, and M. I. Jordan, “A variational perspective
on accelerated methods in optimization,” Proc. Nat. Acad. Sci. USA,
vol. 113, no. 47, pp. E7351–E7358, Nov. 2016.

[33] A. C. Wilson, B. Recht, and M. I. Jordan, “A Lyapunov analysis of
accelerated methods in optimization,” J. Mach. Learn. Res., vol. 22,
no. 113, pp. 1–34, 2021.

[34] H. Attouch and F. Alvarez, “The heavy ball with friction dynamical
system for convex constrained minimization problems,” in Lecture Notes
in Economics and Mathematical Systems. Cham, Switzerland: Springer,
2000, pp. 25–35.

[35] J. E. Gaudio, A. M. Annaswamy, M. A. Bolender, E. Lavretsky, and
T. E. Gibson, “A class of high order tuners for adaptive systems,” IEEE
Control Syst. Lett., vol. 5, no. 2, pp. 391–396, Apr. 2021.

[36] D. E. Ochoa, J. I. Poveda, A. Subbaraman, G. S. Schmidt, and F. R. Pour-
Safaei, “Accelerated concurrent learning algorithms via data-driven
hybrid dynamics and nonsmooth odes,” in Proc. Conf. Learn. Dyn.
Control, 2021, pp. 866–878.

[37] N. M. Boffi and J. E. Slotine, “Implicit regularization and momentum
algorithms in nonlinearly parameterized adaptive control and prediction,”
Neural Comput., vol. 33, no. 3, pp. 590–673, Mar. 2021.

[38] D. M. Le, O. Sudhir Patil, P. M. Amy, and W. E. Dixon, “Integral
concurrent learning-based accelerated gradient adaptive control of uncer-
tain Euler–Lagrange systems,” in Proc. Amer. Control Conf. (ACC),
Jun. 2022, pp. 806–811.

[39] D. M. Le, O. S. Patil, C. F. Nino, and W. E. Dixon, “Accelerated gradient
approach for neural network adaptive control of nonlinear systems,” in
Proc. IEEE 61st Conf. Decis. Control (CDC), Dec. 2022, pp. 1–17.

[40] D. Bernstein, Matrix Mathematics. Princeton, NJ, USA: Princeton Univ.
Press, 2005.

[41] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and
Adaptive Control Design. Hoboken, NJ, USA: Wiley, 1995.

[42] P. Ioannou and J. Sun, Robust Adaptive Control. Upper Saddle River,
NJ, USA: Prentice-Hall, 1996.

[43] J. Slotine and W. Li, Applied Nonlinear Control. Upper Saddle River,
NJ, USA: Prentice-Hall, 1991.

[44] P. Kidger and T. Lyons, “Universal approximation with deep narrow
networks,” in Proc. Conf. Learn. Theory, 2020, pp. 2306–2327.

[45] F. L. Lewis, A. Yesildirek, and K. Liu, “Multilayer neural-net robot
controller with guaranteed tracking performance,” IEEE Trans. Neural
Netw., vol. 7, no. 2, pp. 388–399, Mar. 1996.

[46] P. M. Patre, W. MacKunis, K. Kaiser, and W. E. Dixon, “Asymptotic
tracking for uncertain dynamic systems via a multilayer neural network
feedforward and RISE feedback control structure,” IEEE Trans. Autom.
Control, vol. 53, no. 9, pp. 2180–2185, Oct. 2008.

[47] P. M. Patre, S. Bhasin, Z. D. Wilcox, and W. E. Dixon, “Composite
adaptation for neural network-based controllers,” IEEE Trans. Autom.
Control, vol. 55, no. 4, pp. 944–950, Apr. 2010.

[48] O. S. Patil, A. Isaly, B. Xian, and W. E. Dixon, “Exponential stability
with RISE controllers,” IEEE Control Syst. Lett., vol. 6, pp. 1592–1597,
Nov. 2022.

[49] R. Kamalapurkar, J. A. Rosenfeld, J. Klotz, R. J. Downey, and
W. E. Dixon, “Supporting lemmas for RISE-based control methods,”
2013, arXiv:1306.3432.

[50] R. Kamalapurkar, J. A. Rosenfeld, A. Parikh, A. R. Teel, and
W. E. Dixon, “Invariance-like results for nonautonomous switched sys-
tems,” IEEE Trans. Autom. Control, vol. 64, no. 2, pp. 614–627,
Feb. 2019.

[51] B. E. Paden and S. S. Sastry, “A calculus for computing Filippov’s
differential inclusion with application to the variable structure control
of robot manipulators,” IEEE Trans. Circuits Syst., vols. CS-34, no. 1,
pp. 73–82, Jan. 1987.

[52] F. H. Clarke, Optimization and Nonsmooth Analysis. Philadelphia, PA,
USA: SIAM, 1990.

[53] A. Parikh, R. Kamalapurkar, and W. E. Dixon, “Integral concurrent
learning: Adaptive control with parameter convergence using finite
excitation,” Int. J. Adapt Control Signal Process, vol. 33, pp. 1775–1787,
Dec. 2019.

[54] Y. Liu, Y. Sun, B. Xue, M. Zhang, G. G. Yen, and K. C. Tan, “A survey
on evolutionary neural architecture search,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 34, no. 2, pp. 550–570, Feb. 2023.

[55] R. Ortega, A. Loría, P. J. Nicklasson, and H. J. Sira-Ramirez, Passivity-
based Control of Euler–Lagrange Systems: Mechanical, Electrical and
Electromechanical Applications. Cham, Switzerland: Springer, 1998.

[56] K. Dupree, P. Patre, Z. Wilcox, and W. E. Dixon, “Asymptotic optimal
control of uncertain nonlinear systems,” Automatica, vol. 47, no. 1,
pp. 99–107, 2011.

[57] N. Sharma, S. Bhasin, Q. Wang, and W. E. Dixon, “Predictor-based
control for an uncertain Euler–Lagrange system with input delay,”
Automatica, vol. 47, no. 11, pp. 2332–2342, 2011.

Authorized licensed use limited to: University of Florida. Downloaded on April 06,2025 at 16:39:30 UTC from IEEE Xplore.  Restrictions apply. 



LE et al.: ACCELERATED GRADIENT APPROACH FOR DNN-BASED ADAPTIVE CONTROL 6313

Duc M. Le received the Ph.D. degree in mechanical
engineering from the Department of Mechanical
and Aerospace Engineering, University of Florida,
Gainesville, FL, USA, in 2022.

During his graduate studies, his research was on
nonlinear controls and autonomy, with a focus on
adaptive control and switched system control in a
variety of applications. He joined Aurora Flight Sci-
ences, a Boeing Company, as an Aerospace Controls
Researcher in 2023. His research interests include,
but are not limited to, adaptive control, deep learn-

ing, and guidance navigation and control (GNC).

Omkar Sudhir Patil received the Bachelor of Tech-
nology (B.Tech.) degree in production and industrial
engineering from the Indian Institute of Technology
(IIT), Delhi, in 2018, the Master of Science (M.S.)
degree in mechanical engineering in 2022, and the
Ph.D. degree in mechanical engineering from the
University of Florida, Gainesville, Florida, in 2023.

In 2019, he joined the Nonlinear Controls and
Robotics (NCR) Laboratory at the University of
Florida under the guidance of Dr. Warren Dixon
to pursue his doctoral studies. In 2023, he started

working as a Postdoctoral Research Associate at NCR Laboratory, University
of Florida. His research focuses on the development and application of
innovative Lyapunov-based nonlinear, robust, and adaptive control techniques.

Dr. Patil was honored with the BOSS award for his outstanding bachelor’s
thesis project at IIT. During his Ph.D. studies, he was awarded the Graduate
Student Research Award for outstanding research.

Cristian F. Nino received the B.S. degrees in
mechanical engineering and mathematics and M.S.
degree in mechanical engineering from the Uni-
versity of Florida, Gainesville, Florida, in 2021
and 2024, respectively, where he is currently
pursuing the Ph.D. degree in mechanical engi-
neering, under the supervision of Dr. Warren
Dixon.

His research interests include encompass multi-
agent robotics, autonomy, guidance and navigation,
distributed estimation, robust adaptive nonlinear

control, reinforcement learning, and geometric mechanics and control.
Dr. Nino was awarded the Science, Mathematics, and Research for Transfor-

mation (SMART) Scholarship, which has included three internships at Eglin
Air Force Base in 2023. As a member of the Nonlinear Controls and Robotics
(NCR) laboratory at the University of Florida.

Warren E. Dixon (Fellow, IEEE) received the Ph.D.
degree in electrical engineering from Clemson Uni-
versity, Clemson, SC, USA, in 2000.

His main research interest has been the devel-
opment and application of Lyapunov-based control
techniques for uncertain nonlinear systems.

Dr. Dixon is an ASME and IEEE Fellow for
contributions to adaptive control of uncertain non-
linear systems. His work has been acknowledged
by various early and mid-career awards and best
paper awards. After working at Oak Ridge National

Laboratory as a Eugene P. Wigner Fellow and research staff member, he joined
the University of Florida in 2004, and is currently the Dean’s Leadership
Professor and Department Chair in the Department of Mechanical and
Aerospace Engineering. His work has been acknowledged by various early
and mid-career awards and best paper awards.

Authorized licensed use limited to: University of Florida. Downloaded on April 06,2025 at 16:39:30 UTC from IEEE Xplore.  Restrictions apply. 


