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For high-performance engineering systems, model-based controllers are

typically required to accommodate for the system nonlinearities. Unfortunately,

developing accurate models for friction has been historically challenging. Despite

open debates in Tribology regarding the continuity of friction, typical models

developed so far are piecewise continuous or discontinuous. Motivated by the fact

that discontinuous and piecewise continuous friction models can be problematic

for the development of high-performance controllers, a new model for friction is

proposed. This simple continuously differentiable model represents a foundation

that captures the major effects reported and discussed in friction modeling and

experimentation. The proposed model is generic enough that other subtleties such

as frictional anisotropy with sliding direction can be addressed by mathematically

distorting this model without compromising the continuous differentiability. From

literature, it is known that if the friction effects in the system can be accurately

modeled, there is an improved potential to design controllers that can cancel

the effects, whereas excessive steady-state tracking errors, oscillations, and limit

cycles can result from controllers that do not accurately compensate for friction.



A tracking controller is developed in Chapter 3 for a general Euler-Lagrange

system based on the developed continuously differentiable friction model with

uncertain nonlinear parameterizable terms. To achieve the semi-global asymptotic

tracking result, a recently developed integral feedback compensation strategy is

used to identify the friction effects on-line, assuming exact model knowledge of the

remaining dynamics. A Lyapunov-based stability analysis is provided to conclude

the tracking and friction identification results. Experimental results illustrate the

tracking and friction identification performance of the developed controller.

The tracking result in Chapter 3 is further extended to include systems with

unstructured uncertainties while eliminating the known dynamics assumption.

The general trend for previous control strategies developed for uncertain dynamics

in nonlinear systems is that the more unstructured the system uncertainty, the

more control effort (i.e., high gain or high frequency feedback) is required to reject

the uncertainty, and the resulting stability and performance of the system are

diminished (e.g., uniformly ultimately bounded stability). The result in Chapter

4 is the first result that illustrates how the amalgamation of an adaptive model-

based feedforward term with a high gain integral feedback term can be used to

yield an asymptotic tracking result for systems that have mixed unstructured and

structured uncertainty. Experimental results are provided that illustrate a reduced

root mean squared tracking error.

xii



CHAPTER 1
INTRODUCTION

The class of Euler-Lagrange systems considered in this thesis are described by

the following nonlinear dynamic model:

M(q)q̈ + Vm(q, q̇)q̇ +G(q) + f(q̇) = τ(t). (1—1)

In (1—1), M(q) ∈ Rn×n denotes the inertia matrix, Vm(q, q̇) ∈ Rn×n denotes the

centripetal-Coriolis matrix, G(q) ∈ Rn denotes the gravity vector, f(q̇) ∈ Rn

denotes friction vector, τ(t) ∈ Rn represents the torque input control vector,

and q(t), q̇(t), q̈(t) ∈ Rn denote the link position, velocity, and acceleration

vectors, respectively. For high-performance engineering systems, model-based

controllers (see Dixon et al. [16]) are typically used to accommodate for the system

nonlinearities. In general, either accurate models of the inertial effects can be

developed or numerous continuous adaptive and robust control methods can be

applied to mitigate the effects of any potential mismatch in the inertial parameters.

Unfortunately, developing accurate models for friction has been historically

problematic. In fact, after centuries of theoretical and experimental investigation,

a general model for friction has not been universally accepted, especially at low

speeds where friction effects are exaggerated. In fact, Armstrong-Helouvry [1]

examined the destabilizing effects of certain friction phenomena (i.e., the Stribeck

effect) at low speeds. To further complicate the development of model-based

controllers for high-performance systems, friction is often modeled as discontinuous;

thus, requiring model-based controllers to be discontinuous to compensate for the

effects.

1
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Motivated by the desire to develop an accurate representation of friction in

systems, various control researchers have developed different analytical models,

estimation methods to identity friction effects, and adaptive and robust methods

to compensate for or reject the friction effects. In general, the dominant friction

components that have been modeled include: static friction (i.e., the torque

that opposes the motion at zero velocity), Coulomb friction (i.e., the constant

motion opposing torque at non-zero velocity), viscous friction (i.e., when full

fluid lubrication exists between the contact surfaces), asymmetries (i.e., different

friction behavior for different directions of motion), Stribeck effect (i.e., at very low

speed, when partial fluid lubrication exists, contact between the surfaces decreases

and thus friction decreases exponentially from stiction), and position dependence

(oscillatory behavior of the friction torque due to small imperfections on the motor

shaft and reductor centers, as well as the elastic deformation of ball bearings).

Classical friction models are derived from static maps between velocity and

friction force. From a comprehensive survey of friction models in control literature

(see Armstrong-Helouvry [1] and Armstrong-Helouvry et al. [2]), some researchers

believe that dynamic friction effects are necessary to complete the friction model.

Several dynamic friction models have been proposed (see Bliman and Sorine [5]

and Canudas de Wit et al. [8]). These models combine the Dahl model (see Dahl

[14]) with the arbitrary steady-state friction characteristics of the bristle-based

LuGre model proposed by Canudas de Wit et al. [8]. A recent modification to the

LuGre model is given in the Leuven model by Swevers et al. [52] that incorporates

a hysteresis function with non-local memory unlike the Lu-Gre model. The Leuven

model was later experimentally confirmed by Ferretti et al. [21]. However, a

modification to the Leuven model is provided by Lampaert et al. [34] that replaces

the stack mechanism used to implement the hysteresis by the more efficient

Maxwell slip model. Another criticism to the LuGre model has been recently
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raised by Dupont et al. [18], who underline a nonphysical drift phenomenon that

arises when the applied force is characterized by small vibrations below the static

friction limit. Recently single and multistate integral friction models have been

developed by Ferretti and Magnani et al. [22] based on the integral solution of the

Dahl model. However, these friction models are based on the assumption that the

friction coefficient is constant with sliding speed and have a singularity at the onset

of slip. Unfortunately, each of the aforementioned models are discontinuous (i.e., a

signum function of the velocity is used to assign the direction of friction force such

as the results by Dupont et al. [18], Ferretti et al.[22], Lampaert et al. [34], and

Swevers et al. [52]), and many other models are only piecewise continuous (e.g., the

LuGre model in [8]). As stated previously, the use of discontinuous and piecewise

continuous friction models is problematic for the development of high-performance

continuous controllers.

Chapter 2 and the preliminary efforts by Makkar et al. [42] and Makkar

and Dixon et al. [43] provide a first step at creating a continuously differentiable

friction model that captures a number of essential aspects of friction without

involving discontinuous or piecewise continuous functions. The proposed model

is generic enough that other subtleties such as frictional anisotropy with sliding

direction can be addressed by mathematically distorting this model without

compromising the continuous differentiability.

If the friction effects in a system can be accurately modeled, there is an

improved potential to design controllers that can cancel the effects (e.g., model-

based controllers); whereas, excessive steady-state tracking errors, oscillations,

and limit cycles can result from controllers that do not accurately compensate for

friction. Given the past difficulty in accurately modeling and compensating for

friction effects, researchers have proposed a variety of (typically offline) friction

estimation schemes with the objective of identifying the friction effects. For
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example, an offline maximum likelihood, frequency-based approach (differential

binary excitation) is proposed by Chen et al. [12] to estimate Coulomb friction

effects. Another frequency-based offline friction identification approach was

proposed by Kim and Ha [31]. Specifically, the approach by Kim and Ha [31] uses

a kind of frequency-domain linear regression model derived from Fourier analysis

of the periodic steady-state oscillations of the system. The approach by Kim

and Ha [31] requires a periodic excitation input with sufficiently large amplitude

and/or frequency content. A new offline friction identification tool is proposed

by Kim et al. [32] where the static-friction models are not required to be linear

parameterizable. However the offline optimization result by Kim et al. [32] is

limited to single degree-of-freedom systems where the initial and final velocity

are equal. Another frequency domain identification strategy developed to identify

dynamic model parameters for presliding behavior is given by Hensen and Angelis

et al. [26]. Additional identification methods include least-squares as developed by

Canudas de Wit and Lichinsky [10] and Kalman filtering by Hensen et al. [27].

In addition to friction identification schemes, researchers have developed

adaptive, robust, and learning controllers to achieve a control objective while

accommodating for the friction effects, but not necessarily identifying friction. For

example, given a desired trajectory that is periodic and not constant over some

interval of time, the development by Cho et al. [13] provides a learning control

approach to damp out periodic steady-state oscillations due to friction. As stated

by Cho et al. [13], a periodic signal is applied to the system and when the system

reaches a steady-state oscillation, the learning update law is applied. Liao et

al. [37] proposed a discontinuous linearizing controller along with an adaptive

estimator to achieve an exponentially stable tracking result that estimates the

unknown Coulomb friction coefficient. However, Zhang and Guay [60] describe

a technical error in the result presented by Liao et al. [37] that invalidates the
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result. Additional development is provided by Zhang and Guay [60] that modifies

the result by Liao et al. [37] to achieve asymptotic Coulomb friction coefficient

estimation provided a persistence of excitation condition is satisfied. Tomei in [53]

proposed a robust adaptive controller where only instantaneous friction is taken

into account (dynamic friction effects are not included).

Motivated by the desire to include dynamic friction models in the control

design, numerous researchers have embraced the LuGre friction model proposed

by Canudas de Wit et al. [8]. For example, the result by Tomei [53] was extended

in [54] to include the LuGre friction model proposed by Canudas de Wit et al.

[8], resulting in an asymptotic tracking result for square integrable disturbances.

Robust adaptive controllers were also proposed by Jain et al. [29] and Sivakumar

and Khorrami [50] to account for the LuGre model. Canudas et al. investigated

the development of observer-based approaches for the LuGre model in [8]. Canudas

and Lichinsky in [9] proposed an adaptive friction compensation method, and

Canudas and Kelly in [11] proposed a passivity-based friction compensation term

to achieve global asymptotic tracking using the LuGre model. Barabanov and

Ortega in [4] developed necessary and sufficient conditions for the passivity of the

LuGre model. Three observer-based control schemes were proposed by Vedagarbda

et al. [56] assuming exact model knowledge of the system dynamics. The results

by Vedagarbda et al. [56] were later extended to include two adaptive observers

to account for selected uncertainty in the model. The observer-based design in

Vedagarbda et al. [56] was further extended by Feemester et al. [20]. Specifically,

a partial-state feedback exact model knowledge controller was developed to achieve

global exponential link position tracking of a robot manipulator by Feemster et al.

[20]. Two adaptive, partial-state feedback global asymptotic controllers were also

proposed in [20] that compensate for selected uncertainty in the system model. In

addition, a new adaptive control technique was proposed by Feemster et al. [20] to
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compensate for the nonlinear parameterizable Stribeck effect, where the average

square integral of the position tracking errors were forced to an arbitrarily small

value.

In Chapter 3 and in the preliminary results by Makkar et al. [40] and Makkar

and Dixon et al. [41], a tracking controller is developed for a general Euler-

Lagrange system that contains the new continuously differentiable friction model

with uncertain nonlinear parameterizable terms that was developed in Chapter

2. The continuously differentiable property of the proposed model enabled the

development of a new identification scheme based on a new integral feedback

compensation term. A semi-global tracking result is achieved while identifying the

friction on-line, assuming exact model knowledge of the remaining dynamics.

The control development in Chapter 3 is based on the assumption of exact

model knowledge of the system dynamics except friction. The control of systems

with uncertain nonlinear dynamics, however, is still a much researched area of

focus. For systems with dynamic uncertainties that can be linear parameterized,

a variety of adaptive (e.g., see Krstic [33], Sastry and Bodson [47], and Slotine et

al. [51]) feedforward controllers can be utilized to achieve an asymptotic result.

Some recent adaptive control results have also targeted the application of adaptive

controllers for nonlinearly parameterized systems (see Lin and Qian [38]). Learning

controllers have been developed for systems with periodic disturbances (see

Antsaklis et al. [3]), and recent research has focused on the use of exosystems

by Serrani et al. [49] to compensate for disturbances that are the solution of a

linear time-invariant system with unknown coefficients. A variety of methods

have also been proposed to compensate for systems with unstructured uncertainty

including: various sliding mode controllers (e.g., see Slotine and Li [51], and Utkin

[55]), robust control schemes (see Qu [46]), and neural network and fuzzy logic

controllers (see Lewis et al. [36]). From a review of these approaches a general
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trend that can be determined is that controllers developed for systems with more

unstructured uncertainty will require more control effort (i.e., high gain or high

frequency feedback) and yield reduced performance (e.g., uniformly ultimately

bounded stability).

A significant outcome of the new control structure developed by Xian and

Dawson et al. [57] is that asymptotic stability is obtained despite a fairly general

uncertain disturbance. This technique was used by Cai et al. [7] to develop a

tracking controller for nonlinear systems in the presence of additive disturbances

and parametric uncertainties under the assumption that the disturbances are C2

with bounded time derivatives. Xian et al. [58] utilized this strategy to propose

a new output feedback discontinuous tracking controller for a general class of

nonlinear mechanical (i.e., second-order) systems whose uncertain dynamics

are first-order differentiable. Zhang et al. [59] combined the high gain feedback

structure with a high gain observer at the sacrifice of yielding a semi-global

uniformly ultimately bounded result. This particular high gain feedback method

has also been used as an identification technique. For example, the method has

been applied to identify friction (see Makkar et al. [40] and Makkar and Dixon et

al. [41]), for range identification in perspective and paracatadioptric vision systems

(e.g., see Dixon et al. [17], and Gupta et al. [25]), and for fault detection and

identification (e.g., see McIntyre et al. [44]).

The result in Chapter 4 and the preliminary results in Patre et al. [45] is

motivated by the desire to include some knowledge of the dynamics in the control

design as a means to improve the performance and reduce the control effort while

eliminating the assumption that the dynamics of the system is completely known.

For systems that include some dynamics that can be segregated into structured

(i.e., linear parameterizable) and unstructured uncertainty, this result illustrates

how a new controller, error system, and stability analysis can be crafted to include
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a model-based adaptive feedforward term in conjunction with the high gain integral

feedback technique to yield an asymptotic tracking result. This chapter presents

the first result that illustrates how the amalgamation of these compensation

methods can be used to yield an asymptotic result. Experimental results are

presented to reinforce these heuristic notions.



CHAPTER 2
MODELING OF NONLINEAR UNCERTAINTY-FRICTION

Friction force discontinuities have been debated for at least three centuries

dating back to the published works by Amonton in 1699 (e.g., see the classic text

by Bowden and Tabor [6]). Modern publications assume the sliding motion between

solids occurs at a large number of very small and discrete contacts. In contrast

to popular and simple models that assume a structural interaction across regular

and repeating surface features, the contact across engineering surfaces is known

to occur on the tops of asperities or surface protuberances, which, like fractals,

are distributed across all length scales. The number of contacts for engineering

systems is enormous, which led to the seminal work by Greenwood and Williamson

[24], who treated the distributions of these contacts using statistical distributions.

These functions were integrated to give a continuous expression for the relationship

between contact area and pressure. During sliding, and in particular at the

initiation of gross motion (i.e., pre-sliding), the dynamics of individual asperity

contacts breaking and forming is of great theoretical interest; however, due to

the large number of contacts in engineering systems, the dynamics are treated as

continuous following classical statistical methods.

This chapter provides a first step at creating a continuously differentiable

friction model that captures a number of essential aspects of friction without

involving discontinuous or piecewise continuous functions. In unlubricated or

boundary lubricated sliding, wear is inevitable. The proposed friction model

contains time-varying coefficients that can be developed (e.g., modeled by a

differential equation) to capture spatially and temporally varying effects due to

wear. This continuously differentiable model represents a foundation that captures

9
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the major effects reported and discussed in friction modeling and experimentation.

The proposed model is generic enough that other subtleties such as frictional

anisotropy with sliding direction can be addressed by mathematically distorting

this model without compromising the continuous differentiability.

This chapter is organized as follows. The friction model and the associated

properties are provided in Section 2.1. The generality of the model is demonstrated

through a numerical simulation in Section 2.2. Specifically, numerical simulations

are provided for different friction model parameters to illustrate the different

effects that the model captures. Section 2.3 describes that the developed model

approximates the experimental results obtained in Makkar et al. [41].

2.1 Friction Model and Properties

The proposed model for the friction term f(q̇) in (1—1):

f(q̇) = γ1(tanh(γ2q̇)− tanh(γ3q̇)) + γ4 tanh(γ5q̇) + γ6q̇ (2—1)

where γi ∈ R ∀i = 1, 2, ...6 denote unknown positive constants1 . The friction model

in (2—1) has the following properties.

• It is continuously differentiable and not linear parameterizable.

• It is symmetric about the origin.

• The static coefficient of friction can be approximated by the term γ1 + γ4.

• The term tanh(γ2q̇)− tanh(γ3q̇) captures the Stribeck effect where the friction

coefficient decreases from the static coefficient of friction with increasing slip

velocity near the origin.

• A viscous dissipation term is given by γ6q̇.

• The Coulombic friction is present in the absence of viscous dissipation and is

modeled by the term γ4 tanh(γ5q̇).

1 These parameters could also be time-varying.



11

• The friction model is dissipative in the sense that a passive operator q̇(t) →

f(·) satisfies the following integral inequality [4]Z t

t0

q̇(τ)f(q̇(τ))dτ ≥ −c2

where c is a positive constant, provided q̇(t) is bounded.

Figures 2—1 and 2—2 illustrate the sum of the different effects and characteris-

tics of the friction model. Figure 2—3 shows the flexibility of such a model.

2.2 Stick-Slip Simulation

The qualitative mechanisms of friction are well-understood. To illustrate

how the friction model presented in (2—1) exhibits these effects, various numerical

simulations are presented in this section. The system considered in Figure 2—4

is a simple mass-spring system, in which a unit mass M is attached to a spring

with stiffness k resting on a plate moving with a velocity
.
xp(t) in the positive

X direction, which causes the block to move with a velocity
.
xb(t) in the same

direction. The modeled system can be compared to a mass attached to a fixed

spring moving on a conveyor belt. The plate is moving with a velocity that slowly

increases and saturates, given by the following relation:

.
xp = 1− e−0.1t.

The system described by Figure 2—4 is modelled as follows:

M
..
xb(t) + kxb(t)−Mgf(

.
xp(t)−

.
xb(t)) = 0

where the term
.
xp(t)−

.
xb(t) represents the slip velocity, (i.e., the difference between

the plate velocity and block velocity at any instant of time). To demonstrate the

flexibility of the model, model parameters were varied in order to capture the

Stribeck effect, Coulombic friction effect and viscous dissipation. For example,
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Figure 2—1: Friction model as a composition of different effects including: a)
Stribeck effect, b) viscous dissipation, c) Coulomb effect, and d) the combined
model.

Figure 2—2: Characteristics of the friction model.
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Figure 2—3: Modular ability of the model to selectively model different friction
regimes: top plot-viscous regime (e.g., hydrodynamic lubrication), middle plot-
Coulombic friction regime (e.g., solid lubricant coatings at moderate sliding
speeds), and bottom plot-abrupt change from static to kinetic friction (e.g., non-
lubricous polymers).
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Figure 2—4: Mass-spring system for demonstrating stick-slip friction.

hydrodynamic lubrication in many operating regimes is viscous, lacking the other

effects, which are easily set to zero in the model. Simple Coulombic friction models

are often good for solid lubricant coatings at moderate sliding speeds. To capture

this effect, the static and viscous terms can be set to zero. For some sticky or non-

lubricous polymers, there exists an abrupt change from static to kinetic friction,

which is captured by making the Stribeck decay very rapid.

A Coulombic friction regime is displayed in Figure 2—5 where the friction

model parameters in (2—1) were set as follows: γ1 = 0, γ2 = 0, γ3 = 0, γ4 = 0.1,

γ5 = 100, γ6 = 0. The Coulombic friction coefficient is a constant, opposing

the motion of the block as seen in Figures 2—5 and 2—8. The block velocity, slip

velocity, and the friction force as a function of time are depicted in Figures. 2—6 -

2—8. These figures indicate that the block velocity slowly rises, reaches a maximum

and then begins to oscillate. The slip velocity also rises and then oscillates after

reaching a maximum value. These figures indicate that the friction force causes

the block to move along with the plate until the spring force overcomes the friction

force; hence, the block begins to slip in an opposite direction of the plate velocity



15

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−0.1

−0.05

0

0.05

0.1

[m/sec]

Figure 2—5: Friction coefficient vs slip velocity.

causing the spring to compress. As the spring releases energy back into the system,

the block velocity exceeds the plate velocity. The magnitude of the constant

friction coefficient results in a constant oscillation between the friction force and

the spring force.

The viscous friction plot in Figure (2—9) is obtained by adjusting the parame-

ters as follows: γ1 = 0, γ2 = 0, γ3 = 0, γ4 = 0, γ5 = 0, γ6 = 0.01. The block

velocity, slip velocity and the friction force are given in Figures 2—10 - 2—12. The

block velocity in Figure 2—10 slowly decreases as the viscous friction increases as

displayed in Figure 2—9. The viscous coefficient of friction is an order of magnitude

smaller in comparison to the Coulombic friction coefficient, as a result the friction

force is not sufficient enough to sustain the oscillations of the block. The block

eventually comes to rest and constantly slips on the moving plate.

The Stribeck effect in (2—13) is modeled using the following friction model

parameter values: γ1 = 0.25, γ2 = 100, γ3 = 10, γ4 = 0, γ5 = 0, γ6 = 0. The

block velocity, slip velocity and the friction force are plotted in Figures 2—14 - 2—16.

As seen in Figure 2—13, the Stribeck effect is seen as the high breakaway force at
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Figure 2—6: Block velocity vs time.
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Figure 2—7: Slip velocity vs time.
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Figure 2—8: Friction coefficient vs time.
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Figure 2—9: Friction coefficient vs slip velocity.
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Figure 2—10: Block velocity vs time.
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Figure 2—11: Slip velocity vs time.
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Figure 2—12: Friction coefficient vs time.

the beginning of the motion of the block, which then exponentially decreases.

The block moves with the plate due to the initial friction force. Eventually

enough energy is stored in the spring so that the spring force overcomes the

breakaway friction. The friction force exponentially decays after the breakaway

force is reached. After the block overcomes the breakaway force, the spring force

becomes dominant and causes the block to reverse its direction and move towards

the spring. Since there is no force opposing this motion, a large slip velocity is

exhibited while the spring compresses and releases, pushing the block faster than

the plate.

Figure 2—17 illustrates the sum of the different effects in the friction model in a

stick-slip regime with the following friction model parameters γ1 = 0.25, γ2 = 100,

γ3 = 10, γ4 = 0.1, γ5 = 100, γ6 = 0.01. Figures 2—18 - 2—20 show the velocity of

the block, slip velocity and friction force as a function of time. The block velocity

slowly increases and stores enough energy to reverse the direction of the block.

This storage and release of energy causes the system to oscillate. Figure 2—20 shows

the stick-slip phenomenon.
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Figure 2—13: Friction coefficient vs slip velocity.
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Figure 2—14: Block velocity vs time.
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Figure 2—15: Slip velocity vs time.
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Figure 2—16: Friction coefficient vs time.
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Figure 2—17: Friction coefficient vs slip velocity.
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Figure 2—18: Block velocity vs time.
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Figure 2—19: Slip velocity vs time.
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Figure 2—20: Friction coefficient vs time.
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2.3 Experimental Results

The experimental testbed shown in Figure 2—21 consists of a circular disk

made of Aluminium, mounted on a NSK direct-drive switched reluctance motor

(240.0 Nm Model YS5240-GN001). The NSK motor is controlled through power

electronics operating in torque control mode. The motor resolver provides rotor

position measurements with a resolution of 153600 pulses/revolution at a resolver

and feedback resolution of 10 bits. A Pentium 2.8 GHz PC operating under

QNX hosts the control algorithm, which was implemented via Qmotor 3.0, a

graphical user-interface, to facilitate real-time graphing, data logging, and adjust

control gains without recompiling the program (for further information on Qmotor

3.0, the reader is referred to Loffler et al. [39]). Data acquisition and control

implementation were performed at a frequency of 1.0 kHz using the ServoToGo I/O

board. A 0.315 m X 0.108 m X 0.03175 m rectangular Nylon block was mounted

on a pneumatic linear thruster to apply an external friction load to the rotating

disk. A pneumatic regulator maintained a constant pressure of 15 pounds per

square inch on the circular disk. This testbed was used to implement a tracking

controller with adaptive friction identification developed by the authors in Makkar

et al. [40].

The aim of this experiment was to match the experimentally identified friction

torque using the adaptive term in Makkar et al. [40] and Makkar and Dixon et al.

[41] with the friction torque calculated from the new proposed friction model in

(2—1). The experimentally identified friction is depicted Figure 2—22.

The coefficients in (2—1) were varied to match the experimentally identified

friction torque. The friction torque in (2—1) was calculated as a function of the

rotor velocity with the coefficients chosen as

γ1 = 34.8 γ2 = 650 γ3 = 1 γ4 = 26 γ5 = 200 γ6 = 19.5 (2—2)
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Figure 2—21: Testbed for the experiment.

Figure 2—22 shows a plot of the experimentally determined friction torque, a plot

of friction torque developed from (2—1) and a plot comparing the experimentally

determined friction torque with the developed friction model overlaid.

The experimentally obtained friction torque in Figure 2—22 has viscous and

static friction components and exhibits the Stribeck effect. These facts were taken

into consideration while choosing the constants in (2—1). Values for γ1 and γ4 were

chosen to account for the static friction, and γ6 was chosen to capture the viscous

friction component. As seen in Figure 2—22, the analytical model approximates the

experimental data with the exception of some overshoot. The experimental origin

of the directional frictional anisotropy is discussed in detail in Schmitz et al. [48]

and is attributed to small misalignment between the loading axis and the motor

axis.

2.4 Concluding Remarks

A new continuously differentiable friction model with nonlinear parameter-

izable terms is proposed. This model captures a number of essential aspects of

friction without involving discontinuous or piecewise continuous functions and can
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Figure 2—22: The proposed friction model very closely approximates the experi-
mentally identified friction term obtained from the adaptive controller developed
in Makkar et al. [41]. Top plot depicts the experimentally obtained friction torque,
middle plot depitcs the friction plot obtained from the proposed model and the
bottom plot depicts a comparison of the two with solid line indicating experimen-
tally obtained friction torque and dashed line indicating friction torque obtained
from the proposed friction model.
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be modified to include additional effects. The continuously differentiable property

of the proposed model provides a foundation to develop continuous controllers that

can identify and compensate for nonlinear frictional effects. The development of

one such controller is discussed in next chapter.



CHAPTER 3
IDENTIFICATION AND COMPENSATION FOR FRICTION BY HIGH GAIN

FEEDBACK

Motivated by the desire to include dynamics friction models in the control

design, a new tracking controller is developed in this chapter that contains the new

continuously differentiable friction model with uncertain nonlinear parameterizable

terms that was developed in Chapter 2. Friction models are often based on the

assumption that the friction coefficient is constant with sliding speed and have a

singularity at the onset of slip. Such models typically include a signum function of

the velocity to assign the direction of friction force (e.g., see Lampaert et al. [34],

and Swevers et al. [52]), and many other models are only piecewise continuous

(e.g., the LuGre model in [8]). In Makkar et al. [42], Makkar and Dixon et al.

[43], and Chapter 2, a new friction model is proposed that captures a number of

essential aspects of friction without involving discontinuous or piecewise continuous

functions. The simple continuously differentiable model represents a foundation

that captures the major effects reported and discussed in friction modeling and

experimentation and the model is generic enough that other subtleties such as

frictional anisotropy with sliding direction can be addressed by mathematically

distorting this model without compromising the continuous differentiability.

Based on the fact that the developed model is continuously differentiable, a

new integral feedback compensation term originally proposed by Xian et al.

[57] is exploited to enable a semi-global tracking result while identifying the

friction on-line, assuming exact model knowledge of the remaining dynamics.

A Lyapunov-based stability analysis is provided to conclude the tracking and

friction identification results. Experimental results show two orders of magnitude

28
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improvement in tracking control over a proportional derivative (PD) controller,

and a one order of magnitude improvement over the model-based controller.

Experimental results are also used to illustrate that the experimentally identified

friction can be approximated by the model in Makkar et al. [42] and Makkar and

Dixon et al. [43].

This chapter is organized as follows. The dynamic model and the associated

properties are provided in Section 3.1. Section 3.2 describes the development of

errorsystem followed by the stability analysis in Section 3.3. Section 3.4 describes

the experimental set up and results that indicate improved performance obtained

by implementing the proposed controller followed by discussion in Section 3.5 and

conclusion in Section 3.6.

3.1 Dynamic Model and Properties

The class of nonlinear dynamic systems considered are assumed to be modeled

by the general Euler-Lagrange formulation in (1—1) where the friction term f(q̇) is

assumed to have the form in (2—1) as in Makkar et al. [42] and Makkar et al. [43].

The subsequent development is based on the assumption that q(t) and q̇(t)

are measurable and that M(q), Vm(q, q̇), G(q) are known. Moreover, the following

properties and assumptions will be exploited in the subsequent development:

Property 3.1: The inertia matrix M(q) is symmetric, positive definite, and

satisfies the following inequality ∀ y(t) ∈ Rn:

m1 kyk2 ≤ yTM(q)y ≤ m̄(q) kyk2 (3—1)

where m1 ∈ R is a known positive constant, m̄(q) ∈ R is a known positive function,

and k·k denotes the standard Euclidean norm.

Property 3.2: If q(t) ∈ L∞, then
∂M(q)

∂q
, and

∂2M(q)

∂q2
exist and are bounded.

Moreover, if q(t), q̇(t) ∈ L∞ then Vm(q, q̇) and G(q) are bounded.
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Property 3.3: Based on the structure of f(q̇) given in (2—1), f(q̇), ḟ(q̇, q̈), and

f̈(q̇, q̈,
...
q ) exist and are bounded provided q(t), q̇(t), q̈(t),

...
q (t) ∈ L∞.

3.2 Error System Development

The control objective is to ensure that the system tracks a desired trajectory,

denoted by qd(t), that is assumed to be designed such that qd(t), q̇d(t), q̈d(t),
...
q d(t) ∈ Rn exist and are bounded. A position tracking error, denoted by e1(t) ∈

Rn, is defined as follows to quantify the control objective:

e1 , qd − q. (3—2)

The following filtered tracking errors, denoted by e2(t), r(t) ∈ Rn, are defined to

facilitate the subsequent design and analysis:

e2 , ė1 + α1e1 (3—3)

r , ė2 + α2e2 (3—4)

where α1, α2 ∈ R denote positive constants. The filtered tracking error r(t) is not

measurable since the expression in (3—4) depends on q̈(t).

After premultiplying (3—4) by M(q), the following expression can be obtained:

M(q)r =M(q)q̈d + Vm(q, q̇)q̇ +G(q) (3—5)

+ f(q̇)− τ(t) +M(q)α1ė1 +M(q)α2e2

where (1—1), (3—2), and (3—3) were utilized. Based on the expression in (3—5) the

control torque input is designed as follows:

τ(t) =M(q)q̈d + Vm(q, q̇)q̇ +G(q) +M(q)α1ė1 +M(q)α2e2 + μ(t) (3—6)

where μ(t) ∈ Rn denotes a subsequently designed control term. By substituting

(3—6) into (3—5), the following expression can be obtained:

M(q)r = f(q̇)− μ(t). (3—7)
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From (3—7), it is evident that if r(t) → 0, then μ(t) will identify the friction

dynamics; therefore, the objective is to design the control term μ(t) to ensure that

r(t)→ 0. To facilitate the design of μ(t), we differentiate (3—7) as follows:

M(q)ṙ = ḟ(q̇)− μ̇(t)− Ṁ(q)r. (3—8)

Based on (3—8) and the subsequent stability analysis, μ(t) is designed as follows:

μ(t) = (ks + 1)e2(t)− (ks + 1)e2(t0) (3—9)

+

Z t

t0

[(ks + 1)α2e2(τ) + βsgn(e2(τ))]dτ

where ks ∈ R and β ∈ R are positive constants. The time derivative of (3—9) is

given as

μ̇(t) = (ks + 1)r + βsgn(e2). (3—10)

The expression in (3—9) for μ(t) does not depend on the unmeasurable filtered

tracking error term r(t). However, the time derivative of μ(t) (which is not

implemented) can be expressed as a function of r(t). After substituting (3—10) into

(3—8), the following closed-loop error system can be obtained:

M(q)ṙ = −1
2
Ṁ(q)r − (ks + 1)r − e2 − βsgn(e2) +N(t) (3—11)

where N(t) ∈ Rn denotes the following unmeasurable auxiliary term:

N(q, q̇, t) , ḟ(q̇)− 1
2
Ṁ(q)r + e2. (3—12)

To facilitate the subsequent analysis, another unmeasurable auxiliary term Nd(t) ∈

Rn is defined as follows:

Nd(t) ,
∂f(q̇d)

∂q̇d
q̈d = γ1γ2q̈d − γ1γ2q̈d ktanh(γ2q̇d)k2 − γ1γ3q̈d (3—13)

+ γ1γ3q̈d ktanh(γ3q̇d)k2 + γ4γ5q̈d − γ4γ5q̈d ktanh(γ5q̇d)k2 + γ6q̈d.
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The time derivative of (3—13) is given as follows:

Ṅd(t) =
∂2f(q̇d)

∂q̇2d
q̈2d +

∂f(q̇d)

∂q̇d

...
q d =

...
q d(γ1γ2 − γ1γ3 + γ4γ5 + γ6) (3—14)

−γ1γ2
...
q d ktanh(γ2q̇d)k2 + γ1γ3

...
q d ktanh(γ3q̇d)k2 − γ4γ5

...
q d ktanh(γ5q̇d)k2

−2γ1γ22 ||q̈d||2 tanh(γ2q̇d)[1− ktanh(γ2q̇d)k
2] + 2γ1γ

2
3 ||q̈d||2 tanh(γ3q̇d)

[1− ktanh(γ3q̇d)k2]− 2γ4γ25 ||q̈d||2 tanh(γ5q̇d)[1− ktanh(γ5q̇d)k
2].

After adding and subtracting (3—13), the closed-loop error system in (3—11) can be

expressed as follows:

M(q)ṙ = −1
2
Ṁ(q)r − (ks + 1)r − e2 − βsgn(e2) + Ñ(t) +Nd(t) (3—15)

where the unmeasurable auxiliary term Ñ(t) ∈ Rn is defined as

Ñ(t) , N(t)−Nd(t). (3—16)

Based on the expressions in (3—13) and (3—14), the following inequalities can

be developed:

kNd(t)k ≤ ||q̈d|| · |γ1γ2 + γ4γ5 + γ6 − γ1γ3| ≤ ζNd
(3—17)°°°Ṅd(t)

°°° ≤ ||...q d|| · |γ1γ2 + γ4γ5 + γ6 − γ1γ3|+ ||q̈d||2(2γ1γ22 + 2γ1γ23 + 2γ4γ25) (3—18)

≤ ζNd2

where ζNd
, ζNd2 ∈ R are known positive constants.

3.3 Stability Analysis

Theorem 3.1: The controller given in (3—6) and (3—9) ensures that the

position tracking error is regulated in the sense that

e1(t)→ 0 as t→∞

provided β is selected according to the following sufficient condition:
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β > ζNd
+
1

α2
ζNd2 (3—19)

where ζNd
and ζNd2 are introduced in (3—17) and (3—18), respectively, and ks is

selected sufficiently large. The control system represented by (3—6) and (3—9) also

ensures that all system signals are bounded under closed-loop operation and that

the friction in the system can be identified in the sense that

f(q̇)− μ(t)→ 0 as t→∞.

Proof: Let D ⊂ R3n+1 be a domain containing y(t) = 0, where y(t) ∈ R3n+1 is

defined as

y(t) , [zT (t)
p
P (t)]T (3—20)

where z(t) ∈ R3n is defined as

z(t) , [eT1 eT2 rT ]T , (3—21)

and the auxiliary function P (t) ∈ R is defined as

P (t) , β ||e2(t0)||− e2(t0)
TNd(t0)−

Z t

t0

L(τ)dτ (3—22)

where β ∈ R is nonnegative by design. In (3—22), the auxiliary function L(t) ∈ R is

defined as

L(t) , rT (Nd(t)− βsgn(e2)). (3—23)

The derivative Ṗ (t) ∈ R can be expressed as

Ṗ (t) = −L(t) = −rT (Nd(t)− βsgn(e2)). (3—24)

Provided the sufficient condition introduced in (3—19) is satisfied, the following

inequality can be obtained asZ t

t0

L(τ)dτ ≤ β |e2(t0)|− e2(t0)
TNd(t0). (3—25)
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Hence, (3—25) can be used to conclude that P (t) ≥ 0. Let V (y, t) : D × [0,∞)→ R

be a continuously differentiable positive definite function defined as

V (y, t) , eT1 e1 +
1

2
eT2 e2 +

1

2
rTM(q)r + P (3—26)

that can be bounded as

W1(y) ≤ V (y, t) ≤W2(y) (3—27)

provided the sufficient condition introduced in (3—19) is satisfied. In (3—27), the

continuous positive definite functions W1(y), W2(y) ∈ R are defined as

W1(y) = λ1 kyk2 W2(y) = λ2(q) kyk2 (3—28)

where λ1, λ2(q) ∈ R are defined as

λ1 ,
1

2
min{1,m1}

λ2(q) , max{
1

2
m̄(q), 1}

where m1, m̄(q) are introduced in (3—1). After taking the time derivative of (3—26),

V̇ (y, t) can be expressed as

V̇ (y, t) = rTM(q)ṙ +
1

2
rTṀ(q)r + eT2 ė2 + 2e

T
1 ė1 + Ṗ .

After utilizing (3—3), (3—4), (3—15), and (3—24), V̇ (y, t) can simplified as follows:

V̇ (y, t) = rT Ñ(t)− (ks + 1) krk2 − α2 ke2k2 − 2α1 ke1k2 + 2eT2 e1. (3—29)

Because eT2 (t)e1(t) can be upper bounded as

eT2 e1 ≤
1

2
ke1k2 +

1

2
ke2k2 ,

V̇ (y, t) can be upper bounded using the squares of the components of z(t) as

follows:

V̇ (y, t) ≤ rT Ñ(t)− (ks + 1) krk2 − α2 ke2k2 − 2α1 ke1k2 + ke1k2 + ke2k2 .
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By using the fact ||Ñ(t)|| ≤ ρ(||z||) kzk, the expression in (3—29) can be rewritten

as follows:

V̇ (y, t) ≤ −λ3 kzk2 −
¡
ks krk2 − ρ(||z||) krk kz)k

¢
(3—30)

where λ3 , min{2α1 − 1, α2 − 1, 1} and the bounding function ρ(||z||) ∈ R is a

positive globally invertible nondecreasing function; hence, α1, α2 must be chosen

according to the following conditions:

α1 >
1

2
, α2 > 1.

After completing the squares for the second and third term in (3—30), the following

expression can be obtained:

V̇ (y, t) ≤ −λ3 kzk2 +
ρ2(z) kzk2

4ks
. (3—31)

The following expression can then be obtained from (3—31):

V̇ (y, t) ≤ −W (y) (3—32)

where W (y) = c kzk2, for some positive constant c ∈ R, is a continuous positive

semi-definite function that is defined on the following domain:

D , {y ∈ R3n+1 | kyk ≤ ρ−1(2
p
λ3ks)}.

The inequalities in (3—27) and (3—32) can be used to show that V (y, t) ∈ L∞ in D;

hence, e1(t), e2(t), and r(t) ∈ L∞ in D. Given that e1(t), e2(t), and r(t) ∈ L∞ in

D, standard linear analysis methods (e.g., Lemma 1.4 of [15]) can be used to prove

that ė1(t), ė2(t) ∈ L∞ in D from (3—3) and (3—4). Since e1(t), e2(t), r(t) ∈ L∞ in

D, the assumption that qd(t), q̇d(t), q̈d(t) exist and are bounded can be used along

with (3—2)-(3—4) to conclude that q(t), q̇(t), q̈(t) ∈ L∞ in D. Since q(t), q̇(t) ∈ L∞

in D, Property 2 can be used to conclude that M(q), Vm(q, q̇), G(q), and f(q̇) ∈ L∞

in D. From (3—6) and (3—9), we can show that μ(t), τ(t) ∈ L∞ in D. Given that
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r(t) ∈ L∞ in D, (3—10) can be used to show that μ̇(t) ∈ L∞ in D. Property 2 and

Property 3 can be used to show that ḟ(q) and Ṁ(q) ∈ L∞ in D; hence, (3—8) can

be used to show that ṙ(t) ∈ L∞ in D. Given that ṙ(t) ∈ L∞ in D, then (3—2)-(3—4)

can be used to conclude that
...
q (t) ∈ L∞ in D. Since ė1(t), ė2(t), ṙ(t) ∈ L∞ in

D, the definitions for W (y) and z(t) can be used to prove that W (y) is uniformly

continuous in D.

Let S ⊂ D denote a set defined as follows:

S ,
½
y(t)⊂ D |W2(y(t)) < λ1

³
ρ−1(2

p
λ3ks)

´2¾
. (3—33)

The region of attraction in (3—33) can be made arbitrarily large to include any

initial conditions by increasing the control gain ks (i.e., a semi-global type of

stability result) as in Xian et al. [57]. Theorem 8.4 of [30] can now be invoked to

state that

c kz(t)k2 → 0 as t→∞ ∀y(t0) ∈ S. (3—34)

Based on the definition of z(t), (3—34) can be used to show that

r(t)→ 0 as t→∞ ∀y(t0) ∈ S. (3—35)

Hence, from (3—3) and (3—4), standard linear analysis methods (e.g., Lemma 1.6 of

[15]) can be used to prove that

e1(t)→ 0 as t→∞ ∀y(t0) ∈ S.

The result in (3—35) can also be used to conclude from (3—7) that

μ(t)− f(q̇(t))→ 0 as t→∞ ∀y(t0) ∈ S.
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3.4 Experimental Results

The experimental testbed used for implementing the controller is described in

Chapter 2. The dynamics for the testbed are given as follows:

τ(t) =

£
Im + 0.5ma2

¤
[q̈]| {z }

M(q)q̈

+ f(q̇) (3—36)

where Im(rotor moment of inertia) = 0.255 kg-m2, m (mass of the circular disk)

= 3.175 kg, a (radius of the disk) = 0.25527 m, and the friction torque f(q̇) ∈ R

is defined in (2—1). The control torque input τ(t) given in (3—6) is simplified (i.e.,

the centripetal-Coriolis matrix and gravity terms were omitted) as follows for the

simple testbed:

τ(t) =M(q)q̈d +M(q)α1ė1 +M(q)α2e2 + μ(t) (3—37)

where μ(t) is the adaptive friction identification term defined in (3—9). The desired

disk trajectory (see Figure 3—1) was selected similar to the one used in Feemster et

al. [20] as follows (in degrees):

qd(t) = 11.25 tan
−1(3.0 sin(0.5t))(1− exp(−0.01t3)). (3—38)

This soft-sinusoidal trajectory was proposed in [20] to emphasize a low-speed

transition from forward to reverse directions. For all experiments, the rotor velocity

signal is obtained by applying a standard backwards difference algorithm to

the position signal. All states were initialized to zero. In addition, the integral

structure of the adaptive term in (3—37) was computed on-line via a standard

trapezoidal algorithm.
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Figure 3—1: Desired disk trajectory.

3.4.1 Experiment 1

In the first experiment, no external load from the thruster was applied to

the circular disk. In addition to the controller given in (3—36) and (3—37), a PD

controller and a model-based controller were also implemented for comparison. The

PD controller was implemented as:

τ(t) = kdė1 + kpe1 (3—39)

where kd ∈ R is the derivative gain and kp ∈ R is the proportional gain. The

model-based controller was implemented with standard friction feedforward terms

as:

τ(t) =M(q)q̈d +M(q)α1ė1 +M(q)α2e2 + kcsgn (q̇) + kvq̇ + ksq (3—40)

where kc ∈ R is the Coulomb friction coefficient, kv ∈ R is the viscous friction

coefficient, and ks ∈ R is the static friction coefficient.

The gains for each controller that yielded the best steady-state performance

were determined as follows for the PD controller, model-based controller, and

proposed controller, respectively:
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• PD controller

kd = 2600 kp = 2600 (3—41)

• Model-based controller

α1 = 315 α2 = 315 kc = 0.0828 (3—42)

kv = 0.0736 ks = 0.104

Proposed controller

ks = 10 β = 5 α1 = 100 α2 = 600. (3—43)

The coefficient kc, kv, and ks in (3—40) were calculated from the friction

identification plot in Fig. 3—10. The coefficient ks is calculated from the peak

friction torque at the onset of a cycle, kc is calculated from the flat portion of the

curve after the initial peak, and kv is calculated from the high peak after the flat

portion of the curve.

The position tracking error from each controller is plotted in Figures 3—2-3—4

respectively. A comparison of the position tracking error from each controller

is seen in Figure 3—5. Figure 3—6 depicts an enlarged view of the comparison

of position tracking errors from the model-based controller and the proposed

controller. The torque input by each controller is depicted in Figures 3—7-3—9

respectively. The friction identification term in (3—9) from the proposed controller

obtained from the experiment is given in Figure 3—10.

The signum function for the control scheme in (3—9) was defined as

sgn(e2(t)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 e2 > 0

−1 e2 < 0

0 e2 = 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .
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Figure 3—2: Position tracking error from the PD controller.
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Figure 3—3: Position tracking error from the model-based controller with friction
feedforward terms as described in (3—40).
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Figure 3—4: Position tracking error from the proposed controller.
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Figure 3—5: Comparison of position tracking errors from the three control schemes.
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Figure 3—6: Comparison of position tracking errors from the model-based controller
and the proposed controller.
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Figure 3—7: Torque input by the PD controller.
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Figure 3—8: Torque input by the model-based controller with friction feedforward
terms as described in (3—40).

0 5 10 15 20 25 30 35 40
−150

−100

−50

0

50

100

150

Time [sec]

To
rq

ue
 [N

m
]

Figure 3—9: Torque input by the proposed controller.
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Figure 3—10: Identified friction from the adaptive term in the proposed controller.

3.4.2 Experiment 2

In the second experiment, an external friction load was induced on the system.

An external moment load of 12.774 Nm was applied to the circular disk using the

linear thruster (see Figure 2—21). The desired disk trajectory of (3—38) was again

utilized. The control schemes of (3—37),(3—39), and (3—40) were implemented with

the following gain values:

• PD controller

kd = 2600 kp = 2600

• Model-based controller

α1 = 350 α2 = 350 kc = 0.0828

kv = 0.0736 ks = 0.104

• Proposed controller

ks = 8.9 β = 5.005 α1 = 98 α2 = 780. (3—44)
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The corresponding position tracking error from each controller is shown in Figures

3—11-3—13, respectively. A comparison of the position tracking error from each

controller is seen in Figure 3—14. Figure 3—15 depicts an enlarged view of the

comparison of position tracking errors from the model-based controller and the

proposed controller. The control torque input by each controller is shown in

Figures 3—16-3—18, respectively. The friction identification term in (3—9) from the

proposed controller obtained from the experiment is given in Figure 3—19.
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Figure 3—11: Position tracking error from the PD controller.

3.4.3 Experiment 3

In the third experiment, lubrication was used to examine changes in the sys-

tem performance. The circular disk was lubricated with motor oil and the control

scheme in (3—37) was implemented with same control gains as in Experiment 2

to minimize the position tracking error. The resulting position tracking error is

shown in Figure 3—20, the control torque input is shown in Figure 3—21, and the

friction identification term in (3—9) from the proposed controller obtained from the

experiment is given in Figure 3—22.
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Figure 3—12: Position tracking error from the model-based controller with friction
feedforward terms as described in (3—40).
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Figure 3—13: Position traking error from the proposed controller.
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Figure 3—14: Comparison of position tracking errors from the three control
schemes.
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Figure 3—15: Comparison of position tracking errors from the model-based con-
troller and the proposed controller.
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Figure 3—16: Torque input by the PD controller.
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Figure 3—17: Torque input by the model-based controller with friction feedforward
terms as described in (3—40).
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Figure 3—18: Torque input by the proposed controller.
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Figure 3—19: Identified friction from the adaptive term in the proposed controller.
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Figure 3—20: Position tracking error with the proposed controller when the circular
disk was lubricated.
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Figure 3—21: Torque input by the proposed controller when the circular disk was
lubricated.
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Figure 3—22: Identified friction from the adaptive term in the proposed controller
when the circular disk was lubricated.

3.4.4 Experiment 4

In the fourth experiment, the net external friction induced on the system as

a result of external load applied to the circular disk by the linear thruster was

identified. The friction in the testbed under no-load conditions was identified as in

Experiment 1 using the control gains of Experiment 2. This identified friction term

was subtracted from the identified friction terms obtained from Experiment 2 and

Experiment 3 respectively. The friction between the circular disk and Nylon block

when the disk was not lubricated can be seen in Figure 3—23, and the friction when

the disk was lubricated can be seen in Figure 3—24.

3.4.5 Experiment 5

In the fifth experiment, the experimentally identified friction torque using the

adaptive term in (3—9) was compared with the friction torque model in (2—1). The

friction identified in Figure 3—22 was compared with the model parameters in (2—1)

that were adjusted to match the experimental data. The rotor velocity signal was

obtained by applying a standard backwards difference algorithm to the position

signal, and the friction torque in (2—1) was calculated as a function of this rotor
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Figure 3—23: Net external friction induced with no lubrication. The net friction
was calculated by subracting the identified friction term in Experiment 1 from the
identified friction term in Experiment 2.
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Figure 3—24: Net external friction induced with lubrication. The net friction was
calculated by subracting the identified friction term in Experiment 1 from the
identified friction term in Experiment 3.
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velocity with the constants chosen as

γ1 = 34.8 γ2 = 650 γ3 = 1

γ4 = 26 γ5 = 200 γ6 = 19.5.

The matching of the friction torque with the experimental data is plotted in Figure

3—25.
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Comparison

Figure 3—25: The friction torque calculated from the model in (2—1) approximates
the experimentally identified friction torque in (3—9).

3.5 Discussion

In Experiment 1, it was observed that the position tracking error obtained

from the PD controller in (3—39) deviated around 0.7337 degrees (as seen in Figure

3—2) compared to 0.0506 degrees (as in Figure 3—3) in the model-based controller

in (3—40). This error was further reduced to about 0.0116 degrees when the

proposed controller in (3—37) was implemented (as seen in Figure 3—4). A detailed

comparison of the position tracking errors (in degrees) and control torque (in Nm)

can be seen in Table I.

Similar difference in the order of the magnitude of position tracking errors

was also observed in Experiment 2, when an external friction was applied to the
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Table 3—1: Comparison of tracking results when no external load was applied to the
circular disk.

PD Model-based Proposed
controller controller controller

Standard deviation in error 0.7337 0.0506 0.0116
Root mean square value 0.7442 0.0512 0.0116

Standard deviation in torque 33.2926 36.7456 37.5658
Root mean square value 33.7704 37.2826 32.1060

Table 3—2: Comparison of tracking results when an external load was applied to the
circular disk.

PD Model-based Proposed
controller controller controller

Standard deviation in error 1.8225 0.1203 0.0186
Root mean square value 1.8373 0.1212 0.0186

Standard deviation in torque 82.7043 103.0262 72.9409
Root mean square value 83.3753 103.8698 73.9593

circular disk. The position tracking error when the PD controller in (3—39) was

implemented deviated about 1.8225 degrees (see Figure 3—11), whereas in the

model-based controller in (3—40) deviated about 0.1203 degrees as seen in Figure

3—12. Under the same load conditions, when the proposed controller in (3—37)

was implemented, the position tracking error deviated around 0.0186 degrees (see

Figure 3—13). A detailed comparison of the magnitudes of the position tracking

errors (in degrees) and control torque (in Nm) can be seen in Table II.

Experiments 1-3 illustrate an approximate factor of 60 improvement over a PD

controller, and a factor of approximately 3 over a typical exact model knowledge

controller with static and viscous friction feedforward terms (see Figure 3—5, Figure

3—14, Figure 3—6, and 3—15). The significant improvement in the tracking error

is also observed from Table I and Table II, where the rms value of error from the

proposed controller is about two orders of magnitude better than the PD controller

and about one order of magnitude better than the model-based controller. This
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improvement in performance from the proposed controller was obtained while using

similar or lower input torque as can be seen in Table I and Table II.

This improvement is based on the fact that the proposed controller contains a

feedforward term that identifies the friction as a general time-varying disturbance.

To develop the friction identification term, the friction model is required to be

continuously differentiable. Experiments 1-5 illustrate the identified friction torque,

and Experiment 5 specifically illustrates that a continuously differentiable friction

model proposed in Makkar et al. [42] and Makkar and Dixon et al. [43] closely

matches the identified friction. Mismatches between the identified friction and the

friction model can be attributed to a number of effects such as wear, nonuniformity

of the material, etc. However, the structure of the friction identification term

enables these anisotropic effects to be captured.

It is interesting to compare the identified friction component from each of

the experiments. The difference between Experiment 1 and 2 is that an external

friction load is applied in Experiment 2. By comparing the identified friction

component in Figure 3—10 and Figure 3—19, as expected, a factor of 2-3 increase

in the static friction component is observed in Figure 3—19 with some increase in

the viscous friction effects. The difference between Experiment 2 and 3 is that

the contact surface is lubricated in Experiment 3. By comparing the identified

friction component in Figure 3—19 and Figure 3—22, the static friction component

is unchanged and a slight reduction in the viscous friction is observed. This is

because the viscous friction of the motor assembly is the dominant viscous effect, as

is illustrated by the results from Experiment 4.

In Experiment 5, the parameters of the nonlinear parameterizable friction

model in (2—1) were varied to match the experimentally obtained friction torque

in Figure 3—22. Figure 3—25 shows that the proposed friction model in (2—1) very

closely approximates the experimental friction torque. However, since friction is
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Figure 3—26: Wearing of the Nylon block where it rubbed against the circular disk.

anisotropic in nature, the magnitude of friction in experimental data is not sym-

metrical about the horizontal axis whereas the friction model in (2—1) approximates

it as symmetric. Hence, future work can focus on mathematically distorting the

model proposed in (2—1) by addition of more terms to make it asymmetric or mak-

ing the unknown coefficients time-varying in order to capture more friction effects

such as wear. Wear is evident on the Nylon block as indicated by groves (see Figure

3—26 and Figure 3—27) in the surface.

3.6 Concluding Remarks

A semi-global asymptotic tracking controller is developed based on the pro-

posed continuously differentiable friction model that contains uncertain nonlinear

parameterizable terms. To achieve the tracking result, an integral feedback com-

pensation term is used to identify the system friction effects. A Lyapunov-based

stability analysis is provided to conclude the tracking and friction identification re-

sults. Experimental results show two orders of magnitude improvement in tracking

control over a proportional derivative (PD) controller, and a one order of magni-

tude improvement over the model-based controller. This controller assumes exact
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Figure 3—27: Wear on the circular disk.

model knowledge of the system dynamics except friction. The control develop-

ment in the next chapter is motivated to eliminate this assumption and design a

controller that can segregate the structured and unstructured uncertainties in the

dynamics while achieving asymptotic tracking.



CHAPTER 4
TRACKING CONTROL IN THE PRESENCE OF FRICTION BY HIGH GAIN
FEEDBACK AND A MODEL-BASED FEEDFORWARD COMPONENT-AN

EXTENSION

The result in this chapter is motivated by the desire to include some knowl-

edge of the dynamics in the control design as a means to improve the performance

and reduce the control effort while eliminating the assumption that the dynamics

of the system is completely known. Specifically, for systems that include some

dynamics that can be segregated into structured (i.e., linear parameterizable) and

unstructured uncertainty, this result illustrates how a new controller, error system,

and stability analysis can be crafted to include a model-based adaptive feedforward

term in conjunction with the high gain integral feedback technique to yield an

asymptotic tracking result.

This chapter presents the first result that illustrates how the amalgamation

of these compensation methods can be used to yield an asymptotic result. Heuris-

tically, the addition of the model-based adaptive feedforward term should reduce

the overall control effort because some of the disturbance has been isolated and

compensated for by a non-high gain feedforward element. Moreover, the addition

of the adaptive feedforward term injects some knowledge of the dynamics in the

control structure, which could lead to improved performance.

Preliminary experimental results are presented to reinforce these heuristic

notions. Specifically, the presented controller was implemented on a simple one-

link robot testbed and demonstrated reduced tracking error. For this testbed,

the only dynamics that were included in the feedforward term included the

inertia of the linkage system. This chapter is organized as follows. The dynamic

58
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model and the associated properties are provided in Section 4.1. Section 4.2

describes the development of errorsystem followed by the stability analysis in

Section 4.3. Section 4.4 describes the experimental set up and results that indicate

improved performance obtained by implementing the proposed controller followed

by discussion in Section 4.5 and conclusion in Section 4.6.

4.1 Dynamic Model and Properties

The class of nonlinear dynamic systems considered are described in Chapter 1

and Chapter 2 by the general Euler-Lagrange formulation in (1—1) where the term

f(q̇) ∈ Rn denotes a general nonlinear disturbance (e.g., friction as in Makkar et al.

[42] and Makkar and Dixon et al. [43], unmodeled effects).

The subsequent development is based on the assumption that q(t) and

q̇(t) are measurable and that M(q), Vm(q, q̇) and G(q) are unknown. Moreover,

the following properties and assumptions will be exploited in the subsequent

development:

Property 4.1: The inertia matrix M(q) as in (3—1) is symmetric, positive definite,

and satisfies the following inequality ∀ y(t) ∈ Rn:

m1 kyk2 ≤ yTM(q)y ≤ m̄(q) kyk2 (4—1)

where m1 ∈ R is a known positive constant, m̄(q) ∈ R is a known positive function,

and k·k denotes the standard Euclidean norm.

Property 4.2: If q(t), q̇(t) ∈ L∞, then Vm(q, q̇), f(q̇) and G(q) are bounded.

Moreover, if q(t), q̇(t) ∈ L∞, then
∂M(q)

∂q
,
∂2M(q)

∂q2
,
∂Vm(q, q̇)

∂q
,
∂2Vm(q, q̇)

∂q2
,

∂Vm(q, q̇)

∂q̇
,
∂2Vm(q, q̇)

∂q̇2
,
∂f(q̇)

∂q̇
,
∂2f(q̇)

∂q̇2
,
∂G(q)

∂q
, and

∂2G(q)

∂q2
exist and are bounded.

Property 4.3: There exist positive scalar constant ζc1 such that

kVm(q, q̇)k ≤ ζc1 kq̇k , ∀q, q̇ ∈ Rn. (4—2)
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Property 4.4: The dynamic equation in (1—1) can be linear parameterized as

Yd (qd, q̇d, q̈d) θ ,M(qd)q̈d + Vm(qd, q̇d)q̇d +G(qd) (4—3)

where θ ∈ Rp contains the constant unknown system parameters, and the desired

regression matrix Yd (qd, q̇d, q̈d) ∈ Rn×p contains known functions of the desired

link position, velocity, and acceleration, qd (t) , q̇d (t) , q̈d (t) ∈ Rn, respectively. The

desired trajectory is assumed to be designed such that qd(t), q̇d(t), q̈d(t),
...
q d(t),

....
q d(t) ∈ Rn exist and are bounded.

4.2 Error System Development

The control objective is to ensure that the system tracks a desired time-

varying trajectory despite structured and unstructured uncertainties in the dynamic

model. To quantify this objective, a position tracking error as in (3—2), denoted by

e1(t) ∈ Rn, is defined as

e1 = qd − q. (4—4)

To facilitate the subsequent analysis, filtered tracking errors as in (3—3 and 3—4),

denoted by e2(t), r(t) ∈ Rn, are also defined as

e2 = ė1 + α1e1 (4—5)

r = ė2 + α2e2 (4—6)

where α1, α2 ∈ R denote positive constants. The filtered tracking error r(t) is not

measurable since the expression in (4—6) depends on q̈(t).

The open-loop tracking error system can be developed by premultiplying (4—6)

by M(q) and utilizing the expressions in (1—1), (4—3), (4—4), and (4—5) to obtain

the following expression:

M(q)r = Ydθ +W − τ(t) (4—7)

where Yd(t)θ ∈ Rn is defined in (4—3), and the auxiliary signal W (e1, e2, t) ∈ Rn is
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defined as

W =M(q) (q̈d + α1ė1 + α2e2) + Vm(q, q̇)q̇ +G(q) + f(q̇)− Ydθ. (4—8)

Based on the expression in (4—7), the control torque input is designed as follows:

τ = Ydθ̂ + μ. (4—9)

In (4—9), μ(t) ∈ Rn denotes a high-gain feedback control term defined as

μ(t) = (ks + 1)e2(t)− (ks + 1)e2(t0) (4—10)

+

Z t

t0

[(ks + 1)α2e2(σ) + βsgn(e2(σ))]dσ

where ks, β ∈ R are positive constant control gains as in (3—9), and θ̂(t) ∈ Rp

denotes a parameter estimate vector generated on-line according to the following

update law:
·
θ̂ = ΓẎ T

d r (4—11)

with Γ ∈ Rp×p being a known, constant, diagonal, positive-definite, adaptation gain

matrix. Since Ẏd(t) is only a function of the known time varying trajectory, (4—11)

can be integrated by parts as follows:

θ̂(t) = θ̂(t0) + ΓẎ T
d e2(σ)

¯̄̄t
t0
− Γ

Z t

t0

n
Ÿ T
d e2(σ)− α2Ẏ

T
d e2(σ)

o
dσ (4—12)

so that the parameter estimate vector θ̂(t) implemented in (4—9) does not depend

on the unmeasurable signal r(t).

Remark 4.1: The control design in (4—9) is similar to the results in Xian

et al. [57]. However, previous designs based on [57] could only compensate for

uncertainty in the system through the high gain feedback term μ(t). Through the

new error system development and stability analysis methods presented in the

current result, an adaptive feedforward term can also be used to compensate for

system uncertainty. This flexibility presents a significant advantage because it
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allows more system dynamics to be incorporated in the control design. Specifically,

if some of the system uncertainty can be segregated into a linear parameterizable

form, then the model-based adaptive feedforward term can be injected to compensate

for the uncertainty instead of just relying on the non-model based high gain feedback

term. Heuristically, this contribution should improve the tracking performance and

reduce the control effort. Preliminary experimental results on a simple one-link

robot manipulator provide some validation of this heuristic idea.

The closed-loop tracking error system can be developed by substituting (4—9)

into (4—7) as

M(q)r = Ydθ̃ +W − μ(t) (4—13)

where θ̃(t) ∈ Rp represents the parameter estimation error vector defined as

θ̃ = θ − θ̂. (4—14)

To facilitate the subsequent stability analysis (and to illustrate some insight into

the structure of the design for μ(t)), the time derivative of (4—13) is determined as

M(q)ṙ = −Ṁ(q)r + Ẏdθ̃ − Yd

·
θ̂ + Ẇ − μ̇(t). (4—15)

The time derivative of (4—10) is given as

μ̇(t) = (ks + 1)r + βsgn(e2). (4—16)

After substituting (4—11) and (4—16) into (4—15), the following closed-loop error

system can be obtained:

M(q)ṙ = −1
2
Ṁ(q)r + Ẏdθ̃ +N − μ̇(t)− e2 (4—17)

where N(e1, e2, r, t) ∈ Rn denotes the following unmeasurable auxiliary term:

N = −YdΓẎ T
d r + Ẇ + e2 −

1

2
Ṁ(q)r. (4—18)
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After substituting for the time derivative of W (e1, e2, t), auxiliary term in (4—18)

can be expressed as
N = −YdΓẎ T

d r +
∂M(q)

∂q
q̇
£
α1e2 − α21e1 + α2e2

¤
+M(q)α1r − α2e2 (4—19)

− α1 (e2 − α1e1) + α2 (r − α2e2) +
∂M(q)

∂q
q̇q̈d +M(q)

...
q d +

∂Vm(q, q̇)

∂q
q̇2

+
∂Vm(q, q̇)

∂q̇
q̇q̈ + Vm(q, q̇)q̈ +

∂G(q)

∂q
q̇ +

∂f(q̇)

∂q̇
q̈ − Ẏdθ + e2 −

1

2

∂M(q)

∂q
q̇r.

To further facilitate the subsequent analysis, another unmeasurable auxiliary term

Nd(qd, q̇d, q̈d, t) ∈ Rn is defined as

Nd =
∂f(q̇d)

∂q̇d
q̈d +

∂M(qd)

∂qd
q̇dq̈d +M(qd)

...
q d +

∂Vm(qd, q̇d)

∂qd
q̇2d (4—20)

+
∂Vm(qd, q̇d)

∂q̇d
q̇dq̈d + Vm(qd, q̇d)q̈d +

∂G(qd)

∂qd
q̇d − Ẏdθ.

After adding and subtracting (4—20), the closed-loop error system in (4—17) can be

expressed as

M(q)ṙ = −1
2
Ṁ(q)r + Ẏdθ̃ − μ̇(t)− e2 + Ñ(t) +Nd(t) (4—21)

where the unmeasurable auxiliary term Ñ(e1, e2, r, t) ∈ Rn is defined as

Ñ(t) = N(t)−Nd(t). (4—22)

In a similar manner as in Xian et al. [57], the Mean Value Theorem can be used to

develop the following upper bound°°°Ñ(t)°°° ≤ ρ (kzk) kzk (4—23)

where z(t) ∈ R3n is defined as

z(t) , [eT1 eT2 rT ]T . (4—24)

The following inequalities can be developed based on the expression in (4—20) and

its time derivative:

kNd(t)k ≤ ζNd

°°°Ṅd(t)
°°° ≤ ζNd2 (4—25)
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where ζNd
, ζNd2 ∈ R are known positive constants.

4.3 Stability Analysis

Theorem 4.1: The controller given in (4—9), (4—10), and (4—12) ensures that

all system signals are bounded under closed-loop operation and that the position

tracking error is regulated in the sense that

e1(t)→ 0 as t→∞

provided the control gain ks introduced in (4—10) is selected sufficiently large, and

β is selected according to the following sufficient condition:

β > ζNd
+
1

α2
ζNd2 (4—26)

where ζNd
and ζNd2 are introduced in (4—25).

Proof: Let D ⊂ R3n+p+1 be a domain containing y(t) = 0, where y(t) ∈

R3n+p+1 is defined as
y(t) = [zT (t) θ̃T (t)

p
P (t)]T (4—27)

and the auxiliary function P (t) ∈ R is defined as

P (t) = β ||e2(t0)||− e2(t0)
TNd(t0)−

Z t

t0

L(τ)dτ. (4—28)

In (4—28), the auxiliary function L(t) ∈ R is defined as

L(t) = rT (Nd(t)− βsgn(e2)). (4—29)

The derivative Ṗ (t) ∈ R can be expressed as

Ṗ (t) = −L(t) = −rT (Nd(t)− βsgn(e2)). (4—30)

Provided the sufficient condition introduced in (4—26) is satisfied, the following

inequality can be obtained (see Xian et al. [57])Z t

t0

L(τ)dτ ≤ β ||e2(t0)||− e2(t0)
TNd(t0). (4—31)
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Hence, (4—31) can be used to conclude that P (t) ≥ 0.

Let V (y, t) : D × [0,∞) → R be a continuously differentiable positive definite

function defined as

V (y, t) = eT1 e1 +
1

2
eT2 e2 +

1

2
rTM(q)r + P +

1

2
θ̃TΓ−1θ̃ (4—32)

which satisfies the following inequalities:

U1(y) ≤ V (y, t) ≤ U2(y) (4—33)

provided the sufficient condition introduced in (4—26) is satisfied. In (4—33), the

continuous positive definite functions U1(y), U2(y) ∈ R are defined as

U1(y) = η1 kyk2 U2(y) = η2(q) kyk2 (4—34)

where η1, η2(q) ∈ R are defined as

η1 ,
1

2
min{1,m1, λmin

©
Γ−1

ª
},

η2(q) , max{
1

2
m̄(q),

1

2
λmax

©
Γ−1

ª
, 1}

where m1, m̄(q) are introduced in (4—1) and λmin {·} , λmax {·} denote the minimum

and maximum eigenvalue of the argument respectively. After taking the time

derivative of (4—32), V̇ (y, t) can be expressed as

V̇ (y, t) = rTM(q)ṙ +
1

2
rTṀ(q)r + eT2 ė2 + 2e

T
1 ė1 + Ṗ − θ̃TΓ−1

·
θ̂.

After utilizing (4—5), (4—6), (4—11), (4—16), (4—21), and (4—30), V̇ (y, t) can be

simplified as follows:

V̇ (y, t) = rT Ñ(t)− (ks + 1) krk2 − α2 ke2k2 − 2α1 ke1k2 + 2eT2 e1. (4—35)

Because eT2 (t)e1(t) can be upper bounded as

eT2 e1 ≤
1

2
ke1k2 +

1

2
ke2k2 ,
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V̇ (y, t) can be upper bounded using the squares of the components of z(t) as

follows:

V̇ (y, t) ≤ rT Ñ(t)− (ks + 1) krk2 − α2 ke2k2 − 2α1 ke1k2 + ke1k2 + ke2k2 .

By using (4—23), the expression in (4—35) can be rewritten as follows:

V̇ (y, t) ≤ −λ3 kzk2 −
¡
ks krk2 − ρ(||z||) krk kzk

¢
(4—36)

where λ3 , min{2α1 − 1, α2 − 1, 1}, and the bounding function ρ(||z||) ∈ R is a

positive globally invertible nondecreasing function; hence, α1, α2 must be chosen

according to the following conditions:

α1 >
1

2
, α2 > 1.

After completing the squares for the second and third term in (4—36), the following

expression can be obtained:

V̇ (y, t) ≤ −λ3 kzk2 +
ρ2(z) kzk2

4ks
. (4—37)

The following expression can then be obtained from (4—37)

V̇ (y, t) ≤ −U(y) (4—38)

where U(y) = c kzk2, for some positive constant c ∈ R, is a continuous positive

semi-definite function that is defined on the following domain:

D , {y ∈ R3n+p+1 | kyk ≤ ρ−1(2
p
λ3ks)}.

The inequalities in (4—33) and (4—38) can be used to show that V (y, t) ∈ L∞

in D; hence, e1(t), e2(t), r(t), and θ̃(t) ∈ L∞ in D. Given that e1(t), e2(t), and

r(t) ∈ L∞ in D, standard linear analysis methods can be used to prove that ė1(t),

ė2(t) ∈ L∞ in D from (4—5) and (4—6). Since θ ∈ Rp contains the constant unknown
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system parameters and θ̃(t) ∈ L∞ in D, (4—14) can be used to prove that θ̂(t) ∈ L∞

in D. Since e1(t), e2(t), r(t) ∈ L∞ in D, the assumption that qd(t), q̇d(t), q̈d(t)

exist and are bounded can be used along with (4—4)-(4—6) to conclude that q(t),

q̇(t), q̈(t) ∈ L∞ in D. The assumption that qd(t), q̇d(t), q̈d(t)
...
q d(t),

....
q d(t) exist

and are bounded along with Property 4 can be used to show that Yd (qd, q̇d, q̈d),

Ẏd (qd, q̇d, q̈d), and Ÿd (qd, q̇d, q̈d) ∈ L∞ in D. Since q(t), q̇(t) ∈ L∞ in D, Property

2 can be used to conclude that M(q), Vm(q, q̇), G(q), and f(q̇) ∈ L∞ in D. From

(4—9) and (4—10), we can show that μ(t), τ(t) ∈ L∞ in D. Given that r(t) ∈ L∞

in D, (4—16) can be used to show that μ̇(t) ∈ L∞ in D. Since q̇(t), q̈(t) ∈ L∞

in D, Property 2 can be used to show that V̇m(q, q̇), Ġ(q), ḟ(q) and Ṁ(q) ∈ L∞

in D; hence, (4—15) can be used to show that ṙ(t) ∈ L∞ in D. Since ė1(t), ė2(t),

ṙ(t) ∈ L∞ in D, the definitions for U(y) and z(t) can be used to prove that U(y) is

uniformly continuous in D.

Let S ⊂ D denote a set defined as follows:

S ,
½
y(t)⊂ D | U2(y(t)) < η1

³
ρ−1(2

p
λ3ks)

´2¾
. (4—39)

The region of attraction in (4—39) can be made arbitrarily large to include any

initial conditions by increasing the control gain ks (i.e., a semi-global type of

stability result) as in Xian et al. [57]. Theorem 8.4 of [30] can now be invoked to

state that

c kz(t)k2 → 0 as t→∞ ∀y(t0) ∈ S. (4—40)

Based on the definition of z(t), (4—40) can be used to show that

r(t)→ 0 as t→∞ ∀y(t0) ∈ S. (4—41)

Hence, from (4—5) and (4—6), standard linear analysis methods can be used to

prove that

e1(t)→ 0 as t→∞ ∀y(t0) ∈ S.



68

Figure 4—1: The experimental testbed consists of a 1-link robot mounted on a NSK
direct-drive switched reluctance motor.

4.4 Experimental Results

The testbed depicted in Figure 4—1 was used to implement the developed

controller. The testbed consists of a one-link robotic arm of unknown inertia

mounted on a NSK direct-drive switched reluctance motor (240.0 Nm Model

YS5240-GN001). The NSK motor is controlled through power electronics operating

in torque control mode. The motor resolver provides rotor position measurements

with a resolution of 614400 pulses/revolution at a resolver and feedback resolu-

tion of 12 bits. A Pentium 2.8 GHz PC operating under QNX hosts the control

algorithm, which was implemented via Qmotor 3.0, a graphical user-interface, to

facilitate real-time graphing, data logging, and adjustment of control gains without

recompiling the program (for further information on Qmotor 3.0, the reader is

referred to Loffler et al. [39]). Data acquisition and control implementation were

performed at a frequency of 1.0 kHz using the ServoToGo I/O board.

The dynamics for the testbed are given as follows:

τ(t) = Jq̈ + f(q̇) (4—42)
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where J ∈ R denotes the inertia of the link assembly and f(q̇) ∈ R represents the

friction torque. The control torque input τ(t) given in (4—9) is simplified (i.e., the

centripetal-Coriolis matrix and gravity terms were omitted) for the simple testbed

as:

τ(t) = Ĵ q̈d + μ(t) (4—43)

where Ĵ(t) denotes the adaptive estimate for the inertia of the link assembly, and

μ(t) is the adaptive control term defined in (4—10). The adaptive estimate Ĵ(t) is

updated according to the following update law:

Ĵ (t) = Ĵ (t0) +

Z t

t0

Γ
...
q dr (4—44)

where Γ ∈ R is a constant positive adaptive gain and Ĵ (t0) = 0.179 kg-m2 is an

initial guess for the inertia of the link assembly. The desired link trajectory (see

Figure 4—2) was selected as follows (in degrees):

qd(t) = 50.0 sin(1.5t))(1− exp(−0.01t3)). (4—45)

For all experiments, the rotor velocity signal is obtained by applying a

standard backwards difference algorithm to the position signal. All states were

initialized to zero. In addition, the integral structure of the adaptive term in (4—43)

and (4—44) was computed on-line via a standard trapezoidal algorithm. The signum

function for the control scheme in (4—10) was defined as:

sgn(e2(t)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 e2 > 0

−1 e2 < 0

0 e2 = 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .
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Figure 4—2: Desired trajectory used for the experiment.

4.4.1 Experiment 1

In the first experiment, the controller in (4—9) was implemented without

updating the adaptation term (i.e., Γ = 0). Thus the control torque input given in

(4—43) takes the following form:

τ(t) = Ĵ (t0) q̈d + μ(t)

The gains for the controller that yielded the best steady-state performance were

determined as follows:

ks = 180 β = 20 α1 = 40 α2 = 15. (4—46)

The position tracking error obtained from the controller is plotted in Figure 4—3.

The torque input by the controller is depicted in Figure 4—4.

4.4.2 Experiment 2

In the second experiment, the update law defined in (4—44) was used to update

the adaptive term defined in (4—43). The following control gains were used to

implement the controller in (4—43):
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Figure 4—3: Position tracking error when the adaptive gain is zero.
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Figure 4—4: Torque input when the adaptive gain is zero.



72

0 5 10 15 20 25 30 35 40
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Time [sec]

P
os

iti
on

 T
ra

ck
in

g 
E

rr
or

 [D
eg

re
es

]

Figure 4—5: Position tracking error for the control structure that includes the adap-
tive update law.

ks = 180 β = 20 α1 = 40 α2 = 15 Γ = 5.

The initial guess for the inertia of the link assembly was set to the same value as

in the first experiment. The position tracking error obtained from the controller is

plotted in Figure 4—5. The torque input by the controller is depicted in Figure 4—6.

The inertia estimate is depicted in Figure 4—7.

4.5 Discussion

The position tracking errors for the two cases (without adaptation and with

adaptation) are plotted in Figures 4—3 and 4—5. The results indicate that the

RMS value of the position tracking error when the adaptive feedforward term is

used, is about 5.62% less than the case when no adaptation term is used. This

improvement in performance by the proposed controller was obtained while using

similar input torque as can be seen in Figure 4—4 and Figure 4—6.

In these preliminary results, the adaptive feedforward term was limited to one

parameter. A multi-link robotic testbed is currently being used to develop a more

complete set of experimental results that would allow additional dynamic terms to
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Figure 4—6: Torque input for the control structure that includes the adaptive up-
date law.
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Figure 4—7: Parameter estimate for the mass of the link assembly.
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be used in the adaptive feedforward term. It is expected that with more dynamics

in the adaptive feedforward term that the control effort and tracking error will

decrease even further in comparison with a controller that only contains a high gain

feedback term.

4.6 Concluding Remarks

A new class of asymptotic controllers is developed that contains an adaptive

feedforward term to account for linear parameterizable uncertainty and a high gain

feedback term which accounts for unstructured disturbances. The motivation for

injecting the adaptive feedforward term is that improved tracking performance and

reduce control effort would result from including more knowledge of the system

dynamics in the control structure. This idea was verified by our preliminary

experimental results that indicate reduced RMS tracking errors when only an

additional inertia estimate is used in the feedforward controller.



CHAPTER 5
CONCLUSION AND RECOMMENDATIONS

Motivated by the fact that discontinuous and piecewise continuous friction

models are problematic for the development of high-performance continuous con-

trollers, a new model for friction is proposed. The simple continuously differentiable

model was shown to exhibit viscous, Coulombic, static, and Stribeck effects, and

is inherently passive. A numerical simulation demonstrated the modularity of the

model for use in different friction regimes. The model was also proven to closely

approximate experimental data. A significant advantage of the proposed model is

that the model supports the development of differentiable model-based controllers.

Based on the developed model, semi-global asymptotic tracking is proven in

the presence of a proposed continuously differentiable friction model that contains

uncertain nonlinear parameterizable terms. To achieve the tracking result, an

integral feedback compensation term is used to identify the system friction effects.

A Lyapunov-based stability analysis is provided to conclude the tracking and

friction identification results. Experimental results show two orders of magnitude

improvement in tracking control over a proportional derivative (PD) controller, and

a one order of magnitude improvement over the model-based controller.

An extension of the developed tracking controller is presented in Chapter 4

where a new class of asymptotic controllers is developed that contains an adaptive

feedforward term to account for linear parameterizable uncertainty and a high gain

feedback term (as in Chapter 3) which accounts for unstructured disturbances. In

comparison with previous results that used a similar high gain feedback control

structure, new control development, error systems and stability analysis arguments

were required to include the additional adaptive feedforward term. The motivation
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for including the adaptive feedforward term is that improved tracking performance

and reduce control effort would result from including more knowledge of the

system dynamics in the control structure. This idea was verified by preliminary

experimental results that indicate reduced RMS tracking errors when only an

additional inertia estimate is used in the feedforward controller.

Future efforts can focus on expanding/adjusting the developed friction model

to exhibit additional effects. Effects of wear, temperature, humidity, etc on the

performance of the developed model to accurately predict friction can also be

studied to make the model more robust. The developed model can also be modified

to develop a more generic dynamic model for friction instead of a static map

between velocity and friction.

The identification scheme developed in Chapter 3 can be used to identify

nonlinear uncertainties and develop controllers to cancel their effects. For example,

the developed scheme can be used to identify nonlinear disturbances during high-

speed machining, in aircraft applications, etc.

Further, more controllers can be developed based on the idea of segregating

the structured and unstructured uncertainties to further improve system perfor-

mance. For example, neural networks and fuzzy logic can be explored to account

for the structured uncertainties along with the integral feedback compensation

strategy developed in Chapter 3 to account for unstructured uncertainties to

achieve asymptotic stability results.



APPENDIX A
IDENTIFICATION AND COMPENSATION FOR FRICTION BY HIGH GAIN

FEEDBACK

Lemma: The term f(q̇) ∈ Rn can be defined as in (2—1) as follows:

f(q̇) = γ1(tanh(γ2q̇)− tanh(γ3q̇)) + γ4 tanh(γ5q̇) + γ6q̇. (A—1)

The first and second time derivatives of f(q̇) (i.e., ḟ(q̇, q̈) and f̈(q̇, q̈,
...
q ) exist and

are bounded, provided q(t), q̇(t), q̈(t),
...
q (t) ∈ L∞.

Proof: After taking the time derivative of (A—1) the following expression can

be obtained:

ḟ(q̇, q̈) = q̈ (γ1γ2 + γ4γ5 − γ1γ3 + γ6)− γ1γ2q̈ ktanh(γ2q̇)k2 (A—2)

+ γ1γ3q̈ ktanh(γ3q̇)k2 − γ4γ5q̈ ktanh(γ5q̇)k2

where the following property was utilized:

d

dt
tanh(u(t)) = (1− tanh2(u(t)))du(t)

dt
.

The time derivative of (A—2) can be rewritten as follows:

f̈(q̇, q̈,
...
q ) =

...
q (γ1γ2 + γ4γ5 − γ1γ3 + γ6)− γ1γ2

...
q ktanh(γ2q̇)k2 (A—3)

+ γ1γ3
...
q ktanh(γ3q̇)k2 − γ4γ5

...
q ktanh(γ5q̇)k2 − 2γ1γ22 q̈T q̈ tanh(γ2q̇)

(1− ktanh(γ2q̇)k2) + 2γ1γ23 q̈T q̈ tanh(γ3q̇)(1− ktanh(γ3q̇)k
2)

− 2γ4γ25 q̈T q̈ tanh(γ5q̇)(1− ktanh(γ5q̇)k
2).

Assuming as in Property 3.3 that q̇(t), q̈(t), and
...
q (t) ∈ L∞ in D, it is straightfor-

ward from (A—1), (A—2), and (A—3) that f(q̇), ḟ(q̇, q̈), and f̈(q̇, q̈,
...
q ) ∈ Rn exist and

are bounded.
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Lemma: The auxiliary error Ñ(t) defined in (3—16) as

Ñ(t) = N(t)−Nd(t)

can be upper bounded as follows:

Ñ(t) ≤ ρ(||z||) kzk

where ρ(||z||) is some positive globally invertible nondecreasing function.

Proof: Let N(t) ∈ Rn be defined as follows:

N(q, q̇, q̈, e1, e2, r) ,
∂f(q̇)

∂q̇
q̈ − 1

2
Ṁ(q)r + e2

=
∂f(q̇)

∂q̇
q̈ − 1

2

∂M(q)

∂q
q̇r + e2.

The unmeasurable q̈(t) can be expressed in terms of known and measurable values

e1, e2, and r as

q̈ = q̈d − r − α21e1 + (α1 + α2)e2.

Expanding the definition of N(t), we have

N(q, q̇, q̈d, e1, e2, r) , −
1

2

∂M(q)

∂q
q̇r + e2

+
∂f(q̇)

∂q̇
(q̈d − r − α21e1 + (α1 + α2)e2).

Recall the definition of Nd(t):

Nd(t) , N(qd, q̇d, q̈d, 0, 0, 0)

=
∂f(q̇d)

∂q̇d
q̈d.

The auxiliary error Ñ(t) can then be written as the sum of errors pertaining to

each of its arguments as follows:
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Ñ(t) = N(q, q̇, q̈d, e1, e2, r)−N(qd, q̇d, q̈d, 0, 0, 0)

= N(q, q̇d, q̈d, 0, 0, 0)−N(qd, q̇d, q̈d, 0, 0, 0)

+N(q, q̇, q̈d, 0, 0, 0)−N(q, q̇d, q̈d, 0, 0, 0)

+N(q, q̇, q̈d, 0, 0, 0)−N(q, q̇, q̈d, 0, 0, 0)

+N(q, q̇, q̈d, e1, 0, 0)−N(q, q̇, q̈d, 0, 0, 0)

+N(q, q̇, q̈d, e1, e2, 0)−N(q, q̇, q̈d, e1, 0, 0)

+N(q, q̇, q̈d, e1, e2, r)−N(q, q̇, q̈d, e1, e2, 0).

Applying the Mean Value Theorem to further describe Ñ(t),

Ñ(t) =
∂N(σ1, q̇d, q̈d, 0, 0, 0)

∂σ1
|σ1=υ1 (q − qd) (A—4)

+
∂N(q, σ2, q̈d, 0, 0, 0)

∂σ2
|σ2=υ2 (q̇ − q̇d)

+
∂N(q, q̇, σ3, 0, 0, 0)

∂σ3
|σ3=υ3 (q̈d − q̈d)

+
∂N(q, q̇, q̈d, σ4, 0, 0)

∂σ4
|σ4=υ4 (e1 − 0)

+
∂N(q, q̇, q̈d, e1, σ5, 0)

∂σ5
|σ5=υ5 (e2 − 0)

+
∂N(q, q̇, q̈d, e1, e2, σ6)

∂σ6
|σ6=υ6 (r − 0)

where

υ1 ∈ (qd, q)

υ2 ∈ (q̇d, q̇)

υ3 = q̈d

υ4 ∈ (0, e1)

υ5 ∈ (0, e2)

υ6 ∈ (0, r).

From equation (A—4), Ñ(t) can be upper bounded as follows:
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||Ñ(t)|| ≤
°°°°∂N(σ1, q̇d, q̈d, 0, 0, 0)∂σ1

|σ1=υ1
°°°° | |e1|| (A—5)

+

°°°°∂N(q, σ2, q̈d, 0, 0, 0)∂σ2
|σ2=υ2

°°°° | |e2 − α1e1||

+

°°°°∂N(q, q̇, q̈d, σ4, 0, 0)∂σ4
|σ4=υ4

°°°° ||e1| |
+

°°°°∂N(q, q̇, q̈d, e1, σ5, 0)∂σ5
|σ5=υ5

°°°° ||e2||
+

°°°°∂N(q, q̇, q̈d, e1, e2, σ6)∂σ6
|σ6=υ6

°°°° ||r|| .
The partial derivatives of N as expressed in (A—5) can be expressed as follows:

∂N(σ1, q̇d, q̈d, 0, 0, 0)

∂σ1
= 0 (A—6)

∂N(q, σ2, q̈d, 0, 0, 0)

∂σ2
=

∂2f(q̇)

∂q̇2
q̈d

∂N(q, q̇, q̈d, σ4, 0, 0)

∂σ4
=

∂f(q̇)

∂q̇
(−α21)

∂N(q, q̇, q̈d, e1, σ5, 0)

∂σ5
= 1 + (α1 + α2)

∂f(q̇)

∂q̇

∂N(q, q̇, q̈d, e1, e2, σ6)

∂σ6
= −1

2

∂M(q)

∂q
q̇ − ∂f(q̇)

∂q̇
.

By noting that

υ2 = q̇ − c2(q̇ − q̇d) (A—7)

υ4 = e1 − c4(e1 − 0) = e1(1− c4)

= (qd − q)(1− c4) (A—8)

υ5 = e2 − c5(e2 − 0) = e2(1− c5)

= (ė1 + α1e1)(1− c5) (A—9)

= (q̇d − q̇ + α1(qd − q))(1− c5)

υ6 = r − c6(r − 0) = r(1− c6) = r(1− c6)

= (q̈d − q̈ + α1(q̇d − q̇) + α2(q̇d − q̇ + α1(qd − q)))(1− c6)

where ci ∈ (0, 1) ∈ R, i =2, 4, 5, 6 are unknown constants, we can use Property 3.2
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and Property 3.3 to upper bound (A—6) as follows:°°°°∂N(q, σ2, q̈d, 0, 0, 0)∂σ2
|σ2=υ2

°°°° ≤ ρ2(q̇)°°°°∂N(q, q̇, q̈d, σ4, 0, 0)∂σ4
|σ4=υ4

°°°° ≤ ρ4(q, q̇)°°°°∂N(q, q̇, q̈d, e1, σ5, 0)∂σ5
|σ5=υ5

°°°° ≤ ρ5(q, q̇)°°°°∂N(q, q̇, q̈d, e1, e2, σ6)∂σ6
|σ6=υ6

°°°° ≤ ρ6(q, q̇, r)

where ρ2, ρ4, ρ5, ρ6 ∈ R are some positive functions nondecreasing in q(t) and q̇(t),

and where their arguments come from the variables of (A—6) and (A—7). Because

equations (3—2) and (3—3) give us the following expressions for q and q̇

q = qd − e1

q̇ = q̇d − e2 + α1e1

it is seen that the upper bounds can be rewritten in terms of e1, e2, and r:°°°°∂N(q, σ2, q̈d, 0, 0, 0)∂σ2
|σ2=υ2

°°°° ≤ ρ2(e1, e2)°°°°∂N(q, q̇, q̈d, σ4, 0, 0)∂σ4
|σ4=υ4

°°°° ≤ ρ4(e1, e2)°°°°∂N(q, q̇, q̈d, e1, σ5, 0)∂σ5
|σ5=υ5

°°°° ≤ ρ5(e1, e2)°°°°∂N(q, q̇, q̈d, e1, e2, σ6)∂σ6
|σ6=υ6

°°°° ≤ ρ6(e1, e2, r).

The bound on Ñ(t) can be further simplified:°°°Ñ(t)°°° ≤ ρ2(e1, e2) ||e2 − α1e1||+ ρ4(e1, e2) ke1k

+ ρ5(e1, e2) ke2k+ ρ6(e1, e2, r) krk

Using the upper bound

| |e2 − α1e1| | ≤ ke2k+ α1 ke1k
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Ñ(t) can be further upper bounded as follows:°°°Ñ(t)°°° ≤ (α1ρ2(e1, e2) + ρ4(e1, e2)) ke1k+ (ρ2(e1, e2)

+ ρ5(e1, e2)) ke2k+ ρ6(e1, e2, r) krk .

Using the definition of z(t) ∈ R3n in (3—21), Ñ(t) can be expressed in terms of z(t)

as follows: °°°Ñ(t)°°° ≤ (α1ρ2(e1, e2) + ρ4(e1, e2)) kz(t)k+ (ρ2(e1, e2)

+ ρ5(e1, e2)) kz(t)k+ ρ6(e1, e2, r) kz(t)k

≤ (α1ρ2(e1, e2) + ρ4(e1, e2) + ρ2(e1, e2) + ρ5(e1, e2)

+ ρ6(e1, e2, r)) kzk

≤ ρ(||z||) kzk

where ρ(||z||) is some positive globally invertible nondecreasing function (see Xian

et al. [57]).

Lemma: Define the auxiliary function L(t) ∈ R as

L(t) , rT (Nd(t)− βsgn(e2)). (A—10)

Then, if β satisfies

β > ζNd
+
1

α2
ζNd2 (A—11)

then Z t

t0

L(τ)dτ ≤ ζb (A—12)

where ζb is the following positive constant:

ζb = β ||e2(t0)||− e2(t0)
TNd(t0).
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Proof: Integrating both sides of (A—10),Z t

t0

L(τ)dτ =

Z t

t0

r(τ)T (Nd(τ)− βsgn(e2(τ)))dτ. (A—13)

Substituting (3—4) into (A—13),Z t

t0

L(τ)dτ =

Z t

t0

(
∂e2(τ)

∂τ

T

Nd(τ) + α2e2(τ)
TNd(τ) (A—14)

− ∂e2(τ)

∂τ

T

βsgn(e2(τ))− α2βe2(τ)
Tsgn(e2(τ)))dτ

=

Z t

t0

α2e2(τ)
T (Nd(τ)− βsgn(e2(τ)))dτ

+

Z t

t0

∂e2(τ)

∂τ

T

Nd(τ)dτ −
Z t

t0

∂e2(τ)

∂τ

T

βsgn(e2(τ))dτ.

After integrating the second integral in (A—14) using integration by parts,Z t

t0

L(τ)dτ =

Z t

t0

α2e2(τ)
T (Nd(τ)− βsgn(e2(τ)))dτ (A—15)

+e2(τ)
TNd(τ) |tt0 −

Z t

t0

e2(τ)
T ∂Nd(τ)

dτ
dτ −

Z t

t0

∂e2(τ)

∂τ

T

βsgn(e2(τ))dτ

=

Z t

t0

α2e2(τ)
T (Nd(τ)−

1

α2
(
∂Nd(τ)

∂τ
)− βsgn(e2(τ)))dτ

+e2(t)
TNd(t)− e2(t0)

TNd(t0)− β ||e2(t)| |+ β ||e2(t0)||

≤
Z t

t0

α2 ||e2(τ)| |(||Nd(τ)||+
1

α2

°°°°∂Nd(τ)

∂τ

°°°°− β)dτ

+ ||e2(t)|| (| |Nd(t)||− β) + β ||e2(t0)||− e2(t0)
TNd(t0).

Thus, it is clear from (A—15) that if β satisfies (A—11), then (A—12) holds [57].



APPENDIX B
TRACKING CONTROL IN THE PRESENCE OF FRICTION BY HIGH GAIN
FEEDBACK AND A MODEL-BASED FEEDFORWARD COMPONENT-AN

EXTENSION

Lemma: The auxiliary error Ñ(t) defined in (4—22) as

Ñ(t) = N(t)−Nd(t)

can be upper bounded as follows:°°°Ñ(t)°°° ≤ ρ (kzk) kzk

where ρ (kzk) is some positive globally invertible nondecreasing function.

Proof: N(t) ∈ Rn in (4—19) can be expressed as follows:

N (q, q̇, q̈d,
...
q d, e1, e2, r) = −YdΓẎ T

d r +
∂M(q)

∂q
q̇

⎧⎪⎨⎪⎩ α1 (e2 − α1e1)

+α2e2

⎫⎪⎬⎪⎭
+M(q)α1[{r − α2e2 − α1 (e2 − α1e1)}+ α2 (r − α2e2)]

+
∂M(q)

∂q
q̇q̈d +M(q)

...
q d +

∂Vm(q, q̇)

∂q
q̇2 +

∂Vm(q, q̇)

∂q̇
q̇(q̈d

− r + α2e2 + α1e2 − α21e1) + Vm(q, q̇)(q̈d − r + α2e2

+ α1e2 − α21e1) +
∂G(q)

∂q
q̇ +

∂f(q̇)

∂q̇
(q̈d − r + α2e2

+ α1e2 − α21e1)− Ẏdθ + e2 −
1

2

∂M(q)

∂q
q̇r

where the following are used:

q̇ = q̇d − (e2 − a1e1), (B—1)

q̈ = q̈d − r + α2e2 + α1e2 − α21e1.
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Recall the definition of Nd(t):

Nd(t) , N(qd, q̇d, q̈d, 0, 0, 0)

=
∂f(q̇d)

∂q̇d
q̈d +

∂M(qd)

∂qd
q̇dq̈d +M(qd)

...
q d +

∂Vm(qd, q̇d)

∂qd
q̇2d

+
∂Vm(qd, q̇d)

∂q̇d
q̇dq̈d + Vm(qd, q̇d)q̈d +

∂G(qd)

∂qd
q̇d − Ẏdθ.

The auxiliary error Ñ(t) can be written as the sum of errors pertaining to each

of its arguments as follows:

Ñ(t) = N (q, q̇, q̈d,
...
q d, e1, e2, r)−N (qd, q̇d, q̈d,

...
q d, 0, 0, 0)

= N (q, q̇d, q̈d,
...
q d, 0, 0, 0)−N (qd, q̇d, q̈d,

...
q d, 0, 0, 0)

+N (q, q̇, q̈d,
...
q d, 0, 0, 0)−N (q, q̇d, q̈d,

...
q d, 0, 0, 0)

+N (q, q̇, q̈d,
...
q d, 0, 0, 0)−N (q, q̇, q̈d,

...
q d, 0, 0, 0)

+N (q, q̇, q̈d,
...
q d, 0, 0, 0)−N (q, q̇, q̈d,

...
q d, 0, 0, 0)

+N (q, q̇, q̈d,
...
q d, e1, 0, 0)−N (q, q̇, q̈d,

...
q d, 0, 0, 0)

+N (q, q̇, q̈d,
...
q d, e1, e2, 0)−N (q, q̇, q̈d,

...
q d, e1, 0, 0)

+N (q, q̇, q̈d,
...
q d, e1, e2, r)−N (q, q̇, q̈d,

...
q d, e1, e2, 0) .

Applying the Mean Value Theorem to further describe Ñ(t),

Ñ(t) =
∂N(σ1, q̇d, q̈d,

...
q d, 0, 0, 0)

∂σ1
|σ1=v1 (q − qd) (B—2)

+
∂N(q, σ2, q̈d,

...
q d, 0, 0, 0)

∂σ2
|σ2=v2 (q̇ − q̇d)

+
∂N(q, q̇, σ3,

...
q d, 0, 0, 0)

∂σ3
|σ3=v3 (q̈d − q̈d)

+
∂N(q, q̇, q̈d, σ4, 0, 0, 0)

∂σ4
|σ4=v4 (

...
q d −

...
q d)

+
∂N(q, q̇, q̈d,

...
q d, σ5, 0, 0)

∂σ5
|σ5=v5 (e1 − 0)

+
∂N(q, q̇, q̈d,

...
q d, e1, σ6, 0)

∂σ6
|σ6=v6 (e2 − 0)

+
∂N(q, q̇, q̈d,

...
q d, e1, e2, σ7)

∂σ7
|σ7=v7 (r − 0)
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where

v1 ∈ (qd, q)

v2 ∈ (q̇d, q̇)

v3 ∈ (q̈d, q̈d)

v4 ∈ (
...
q d,
...
q d)

v5 ∈ (0, e1)

v6 ∈ (0, e2)

v7 ∈ (0, r) .

From equation (B—2), Ñ(t) can be upper bounded as follows:°°°Ñ(t)°°° ≤ °°°°∂N(σ1, q̇d, q̈d, ...q d, 0, 0, 0)

∂σ1
|σ1=v1

°°°° ke1k (B—3)

+

°°°°∂N(q, σ2, q̈d, ...q d, 0, 0, 0)

∂σ2
|σ2=v2

°°°° ke2 − a1e1k

+

°°°°∂N(q, q̇, q̈d, ...q d, σ5, 0, 0)

∂σ5
|σ5=v5

°°°° ke1k
+

°°°°∂N(q, q̇, q̈d, ...q d, e1, σ6, 0)

∂σ6
|σ6=v6

°°°° ke2k
+

°°°°∂N(q, q̇, q̈d, ...q d, e1, e2, σ7)

∂σ7
|σ7=v7

°°°° krk .
The partial derivatives of N as expressed in (B—3) can be expressed as follows:

∂N(σ1, q̇d, q̈d,
...
q d, 0, 0, 0)

∂σ1
=

∂2M(σ1)

∂σ21
q̇dq̈d +

∂M(σ1)

∂σ1

...
q d (B—4)

+
∂2Vm(σ1, q̇d)

∂σ21
q̇2d +

∂2Vm(σ1, q̇d)

∂σ1∂q̇d
q̇dq̈d

+
∂Vm(σ1, q̇d)

∂σ1
q̈d +

∂2G(σ1)

∂σ21
q̇d −

∂Ẏdθ

∂σ1
,
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∂N(q, σ2, q̈d,
...
q d, 0, 0, 0)

∂σ2
=

∂M(q)

∂q
q̈d +

∂2Vm(q, σ2)

∂σ2∂q
σ22 + 2

∂Vm(q, σ2)

∂q
σ2

+
∂2Vm(q, σ2)

∂σ22
σ2q̈d +

∂Vm(q, σ2)

∂σ2
q̈d +

∂G(q)

∂q

+
∂2f(σ2)

∂σ22
q̈d −

∂Ẏdθ

∂σ2
,

∂N(q, q̇, q̈d,
...
q d, σ5, 0, 0)

∂σ5
= −α21(

∂M(q)

∂q
q̇ +

∂Vm(q, q̇)

∂q̇
q̇ + Vm(q, q̈d)

+
∂f(q̇)

∂q̇
) + α31M(q)−

∂Ẏdθ

∂σ5
,

∂N(q, q̇, q̈d,
...
q d, e1, σ6, 0)

∂σ6
=

∂M(q)

∂q
q̇ (α1 + α2)−M(q)

¡
α1α2 + α21 + α22

¢
− ∂Ẏdθ

∂σ6
+ 1 + (α1 + α2) (

∂f(q̇)

∂q̇
+ Vm(q, q̇)

+
∂Vm(q, q̇)

∂q̇
q̇),

∂N(q, q̇, q̈d,
...
q d, e1, e2, σ7)

∂σ7
=

∂YdΓẎ
T
d

∂σ7
σ7 − YdΓẎ

T
d +M(q) (α1 + α2)−

∂f(q̇)

∂q̇

− ∂Vm(q, q̇)

∂q̇
q̇ − Vm(q, q̇)−

∂Ẏdθ

∂σ7
− 1
2

∂M(q)

∂q
q̇.

By noting that

v1 = q − c1 (q − qd)

v2 = q̇ − c2 (q̇ − q̇d)

v5 = e1 (1− c5)

v6 = e2 (1− c6)

v7 = r (1− c7)
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where ci ∈ (0, 1) ∈ R, i = 1, 2, 5, 6, 7 are unknown constants, we can upper

bound (B—4) as follows:°°°°∂N(σ1, q̇d, q̈d, ...q d, 0, 0, 0)

∂σ1
|σ1=v1

°°°° ≤ ρ1(e1)°°°°∂N(q, σ2, q̈d, ...q d, 0, 0, 0)

∂σ2
|σ2=v2

°°°° ≤ ρ2(e1, e2)°°°°∂N(q, q̇, q̈d, ...q d, σ5, 0, 0)

∂σ5
|σ5=v5

°°°° ≤ ρ5(e1, e2)°°°°∂N(q, q̇, q̈d, ...q d, e1, σ6, 0)

∂σ6
|σ6=v6

°°°° ≤ ρ6(e1, e2)°°°°∂N(q, q̇, q̈d, ...q d, e1, e2, σ7)

∂σ7
|σ7=v7

°°°° ≤ ρ7(e1, e2, r).

The bound on Ñ(t) can be further simplified:°°°Ñ(t)°°° ≤ ρ1(e1) ke1k+ ρ2(e1, e2) ke2 − α1e1k

+ ρ5(e1, e2) ke1k+ ρ6(e1, e2) ke2k

+ ρ7(e1, e2, r) krk .

Using the upper bound

| |e2 − α1e1| | ≤ ke2k+ α1 ke1k .

Ñ(t) can be further upper bounded as follows:°°°Ñ(t)°°° ≤ (ρ1(e1) + α1ρ2(e1, e2) + ρ5(e1, e2)) ke1k

+ (ρ2(e1, e2) + ρ6(e1, e2)) ke2k+ ρ7(e1, e2, r) krk .
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Using the definition of z(t) ∈ R3n in (4—24), Ñ(t) can be expressed in terms of

z(t) as follows: °°°Ñ(t)°°° ≤ (ρ1(e1) + α1ρ2(e1, e2) + ρ5(e1, e2)) kz(t)k

+ (ρ2(e1, e2) + ρ6(e1, e2)) kz(t)k

+ ρ7(e1, e2, r) kz(t)k

≤ (ρ1(e1) + α1ρ2(e1, e2) + ρ5(e1, e2)

+ ρ2(e1, e2) + ρ6(e1, e2) + ρ7(e1, e2, r)) kz(t)k .

Therefore, °°°Ñ(t)°°° ≤ ρ (kzk) kzk

where ρ (kzk) is some positive globally invertible nondecreasing function.
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