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Neuromuscular electrical stimulation (NMES) is the application of an electric

potential field across a muscle to produce a contraction. When the stimulus produces

a functional limb motion, it is often called functional electrical stimulation (FES). NMES

is used for postoperative rehabilitation, muscle strengthening for patients with motor

function impairment, and it can also be implemented in a closed-loop feedback manner

to assist a person in activities of daily living.

External muscle stimulation is known to yield rapid muscle fatigue. When the

muscle fatigues, the torque production decreases and the muscle response to electrical

stimulation is delayed. Such changes in the torque and electromechanical delay (EMD)

can lead to limit cycle oscillations and other undesirable or unpredictable behaviors.

This thesis focuses on controlling the isometric torque evoked by external electrical

stimulation of the quadriceps femoris muscle group. After highlighting the necessity

of delay compensation in NMES closed-loop control, EMD and uncertainties are

considered in the Lyapunov-based stability analysis that is used to design closed-loop

controllers. The developed controllers are tested in NMES experiments on healthy

individuals. The control designs are based on the assumption that the EMD is known

and first experiments highlighted the time-varying aspect of the EMD; therefore, a delay

estimation algorithm is developed to measure the delay between the stimulation and

torque signals in real time. The results show that the developed controller enabled the

8



reaction torque evoked by external electrical stimulation to track a desired torque despite

time-varying input delays and uncertain dynamics.
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CHAPTER 1
INTRODUCTION

1.1 Context

Motor neurons innervate muscle fibers and control their contractions by transmitting

electrical potentials along their axons from the brain to the muscle. Skeletal muscles

are essential for locomotion: they pull on tendons and, by contracting they allow the

joint to rotate and thus, the body to move. A disruption in the motor signal path or

damage in the motor cortex can impair motor functions (e.g., following stroke or spinal

cord injury). Based on Galvani’s and Volta’s discoveries [1], an electrical current

propagating along muscle fibers between two electrodes can cause the muscle to

contract. Neuromuscular electrical stimulation (NMES) had been developed based on

this phenomenon and functional electrical stimulation is the application of NMES to

perform functional tasks [2]. The electrodes used to stimulate the muscle can be placed

over the skin (transcutaneous stimulation, non invasive) or beneath the skin, closer to

the motor neuron (percutaneous stimulation, invasive). An example of transcutaneous

stimulation is illustrated in Figure 1-1.

NMES is a technique primarily used in postoperative rehabilitation [3–5] and

for muscle strengthening [6]. However, it can also be implemented in a closed-loop

feedback mechanism where the electrical stimuli are designed to achieve various

rehabilitation outcomes involving dynamics or isometric contractions [7–16]; autonomy

for paraplegic patients [17], obstacle avoidance [11] and daily assistance [18–20] are

examples of FES applications. Two types of exercises are performed during NMES

training depending on the targeted type of contractions: in isometric contractions,

the muscle length is constant and the joint angle is fixed, whereas the muscle length

shortens and the joint angle varies in dynamic contractions. An isometric NMES

training example is given in Figure 1-2. Many rehabilitation outcomes mandate dynamic

training leading to limb motion. For other outcomes, isometric contractions are more
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advantageous: it is considered safer than dynamic training since the joint is not moving,

develops resistance, can decrease the pain during the rehabilitation time [21, 22] and

may lower blood pressure of patients with high risks of cardiovascular disease by

providing higher intensity exercises [23,24].

Experimental evidence exists to demonstrate that there is a time lag, termed

electromechanical delay (EMD), between the muscle electrical activation and the onset

of muscle force [25–29]. This delay primarily results from the time required to stretch

the elastic components in series with the contractile elements of a muscle [30]. There

are many discrepancies in the literature relative to the delay value due to different

measurement methods [31]. Control instability may be caused by the input delay, and

therefore, EMD should be considered in the system model and in the control strategy.

In addition to the EMD, there are other physiological mechanisms occuring during

muscle contractions. Muscle response to electrical impulses is nonlinear and depends

on the user’s physiological conditions and the stimulation parameters [32–35]. Experi-

mental results show evidence of fatigue during muscle contractions that limits the control

performance. Muscle fatigue is a process whereby the muscle force decreases even

though the stimulation signal is maintained [32, 36, 37] and muscle fatigue is known to

occur faster with NMES training than voluntary contractions. Failure of motor neuron

excitation or impairment of action potential propagation are suggested explanations of

muscle fatigue [38]. There are various suggested causes for NMES-induced fatigue

such as a reversal of the Henneman’s size principle [39] as well as spatially fixed and

temporally synchronous fiber recruitment [40] and stimulation frequency [41]. Further,

muscle fatigue has been shown to lengthen the EMD [42–44]. Many other factors

are suspected to influence the EMD including: type of exercise performed [26, 27],

temperature [45], gender [46] and age [43,47].
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Figure 1-1: Example of transcutaneous electrical stimulation of the quadriceps femoris
muscle group: the stimulation signal is flowing between the two electrodes, evoking
muscle fiber contractions.

The focus of this thesis is to design closed-loop feedback control methods that

compensates for NMES-induced delays; isometric contractions of the quadriceps

femoris muscle group were considered.

1.2 Literature Review

NMES-induced delays are a result of the muscle activation process; therefore, they

are introduced in the dynamics via a delayed input [48, 49]. Compared to open-loop

shaping of the modulation strategy, closed-loop control methods to compensate for EMD

have received less attention.

NMES closed-loop controllers were developed in [50–52] to compensate for EMD

assuming linear dynamics and a constant known delay. The previous stability results

of nonlinear methods in [53–55] that actively compensate for the known input delay

have focused on more general dynamical systems assuming exact model knowledge.

The constant input delay issue in uncertain nonlinear dynamical systems is addressed

in [56–59] where the delay is assumed to be known, and in [56, 60] where the delay
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(1) 

(2) 

(3) 

(4) 

(5) 

Figure 1-2: Example of electrically-induced contraction of the quadriceps femoris muscle
group evoking a knee extension. In isometric contractions, the lower shank is fixed and
the knee joint angle (5) is constant while an electrical signal stimulates the muscle fibers
between the electrodes (2). The contraction results in a torque (3) at the knee-joint. The
corresponding force (4) is measured with a force transducer (1).
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is unknown. Results of known constant EMD compensation are presented in [61] for

known muscle dynamics and in [29] for uncertain Euler-Lagrange dynamics applied to

the muscle.

While previous research focused on NMEs closed-loop stabilization in the pres-

ence of constant input delays in the dynamics, the time-varying aspect of the delay is

highlighted in experiments. Even though researchers have pursued methods to slow the

rate of NMES-induced fatigue, for instance by decreasing the stimulation frequency or

pattern [62, 63], or by modulating the input signal [64], the onset of fatigue is inevitable.

To compensate for the known time-varying input delay, methods were developed to

stabilize input delayed systems in [65] and [66] assuming exact model knowledge and

in [67] where semi-global uniformly ultimately bounded position tracking is achieved for

uncertain Euler-Lagrange dynamics.

Previous NMES results have achieved closed-loop control yielding dynamic con-

tractions. Fewer studies investigated closed-loop control yielding isometric contractions.

In [68], a linear torque tracking controller was developed for closed-loop NMES. A group

of recent results develop torque tracking controllers for isometric contractions using

fatigue prediction [69–71]: muscle fatigue is estimated based on electromyographic

(EMG) signals in order to control the ankle torque. However, surface EMG are difficult

to dissociate from the input stimulation signal during transcutaneous electrical stimula-

tion. Further, EMD was not considered in the aforementioned torque tracking results,

although it has influence on the reaction torque and system stability.

1.3 Outline

This thesis is focused on the development of a torque tracking controller for iso-

metric NMES on the quadriceps femoris muscle group with time-varying known input

delays in the dynamics. Lyapunov-based stability methods yield global exponentially

bounded torque tracking error when EMD is not considered in the dynamics and global

uniformly ultimately bounded torque tracking error despite the presence of uncertainties,
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nonlinearities and EMD. Experiments were conducted on healthy subjects to assess the

performance of the developed controllers.

Chapter 1 presents the context and the motivations of this work. Previous studies

that investigated NMES closed-loop control are reviewed.

Chapter 2 is an introduction to NMES torque control. The EMD is not considered

in the model dynamics in order to focus on the challenges due to torque tracking. The

theoretical stability proof yields exponential tracking, whereas the simulations show

instability of the torque tracking error when delays are introduced in the system plant.

In Chapter 3, a constant EMD is included in the system model along with a delay

compensation term in the control input. The developed controller achieves global

uniformly ultimately bounded torque tracking. Experiments were conducted on a

modified leg extension machine to illustrate the performance of the controller where the

EMD was estimated before each trial.

In Chapter 4, a controller is developed that compensates for a time-varying input

delay during isometric contractions. A Lyapunov-based analysis is used to prove a

global uniformly ultimately bounded torque tracking error. The controller was tested

in experiments on healthy individuals where the EMD was estimated in real time. At

the end of this chapter, constant and time-varying delay compensation methods are

compared.
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CHAPTER 2
ISOMETRIC TORQUE TRACKING WITHOUT INPUT DELAYS

2.1 Model Presentation

An electric potential field across a muscle can depolarize a motor neuron if its

amplitude is greater than the excitation threshold, evoking a contraction of the muscle

fibers and producing a torque [2]. This thesis focuses on electrically-evoked isometric

contractions of the quadriceps femoris muscle group. A reaction torque is produced at

the knee-joint and is considered as the time-varying state of the system. The individual

is seating with the leg fixed and the torque output is measured during the trials. The

uncertain nonlinear model in [49] is adapted to isometric contractions by fixing the joint

angle and adding to the model equation the reaction torque due to the force exerted by

the force transducer on the leg, yielding

R(t) = f(q) +D(t) + Ω(t)V (t), (2–1)

where R ∈ R denotes the reaction torque, f(q) ∈ R denotes the gravity and the elastic

components, which depend only on the constant knee-joint angle q ∈ R, D ∈ R denotes

time-varying exogenous unknown disturbances, and Ω ∈ R is an unknown nonzero

time-varying function relating the input voltage V ∈ R to the torque.

Assumption 1. The disturbance D is bounded and its first time-derivative exists and is

bounded [29].

Assumption 2. The positive nonzero unknown function Ω is bounded such that

Ω ≤ Ω(t) ≤ Ω for all t, where Ω and Ω are positive constants. The first time-derivative of

Ω exists and is bounded.

Remark 1. As muscle fatigues, the reaction torque decays, but only to a minimum value.

Assumption 2 is mild in the sense that it assures a known conservative lower bound

which relates to the minimum torque that can be produced for a given input. This bound

could be determined experimentally.

16



The control objective is to design a continuous controller that ensures the reaction

torque R(t) of the input delayed system in (2–1) tracks a desired torque Rd(t) ∈ R

despite uncertainties and additive bounded disturbances.

2.2 Control Development

To quantify the objective, the torque tracking error between a desired torque Rd ∈ R

and the measured torque is defined as

e , Rd −R. (2–2)

The open-loop error system is obtained by multiplying (2–2) by Ω−1 and taking its

time-derivative such that
d (Ω−1e)

dt
= S − V̇ , (2–3)

where the auxiliary term S , d
dt

(Ω−1 (Rd − f(q)−D)) can be upper bounded by a

positive constant ε2 ∈ R using Assumptions 1 and 2 as

|S| ≤ ε2. (2–4)

Based on the subsequent analysis and (2–3), the control input is designed as the

solution to

V̇ = ka1e+ ka2sgn(e), V (t0) = V0, (2–5)

where V0 ∈ R is a selectable constant, and ka1, ka2 ∈ R are two positive control gains.

Substituting (2–5) into (2–3), the closed-loop error system is written as

d (Ω−1e)

dt
= S − ka1e− ka2sgn(e). (2–6)

2.3 Stability Analysis

Theorem 1. Given the model in (2–1), the control law in (2–5) ensures a global expo-

nentially bounded torque tracking error in the sense that

|e(t)| ≤ ε1e
−ε0t, (2–7)

17



where ε0, ε1 ∈ R+ denote constants, provided the following sufficient condition is

satisfied

ka2 > ε2.

Proof: Let VL : R × [0;∞) → R be a continuously differentiable, positive definite

functional defined as

VL =
1

2

(
Ω−1e

)2
, (2–8)

which can be bounded as

λ1e
2 ≤ VL ≤ λ2e

2, (2–9)

where λ1 , 1
2
Ω
−2

and λ2 , 1
2
Ω−2 are two positive constants. Using (2–6), the time-

derivative of (2–8) can be expressed as

V̇L = Ω−1e (S − ka1e− ka2sgn(e)) . (2–10)

Using (2–4), (2–10) can be upper bounded as

V̇L ≤ −ka1Ω−1e2 − Ω−1 (ka2 − ε2) |e|

V̇L ≤ −ka1Ω−1e2. (2–11)

Using (2–8) and Assumption 2, the expression in (2–11) can be written as

V̇L ≤ −2ka1ΩVL. (2–12)

Therefore, VL is positive definite, and V̇L is negative definite. The differential equation in

(2–12) can be solved, and using (2–8), the torque tracking error is bounded as

|e| ≤ Ω
√

2VL(t0)exp (−ka1Ω (t− t0)) ,

yielding the result in (2–7). From (2–1), the control input V is bounded.

18



2.4 Simulations

The controller developed in this chapter is tested in simulations. A plant model was

implemented according to (2–1) where f(q) = 2 N ·m, the disturbance is designed as

a Gaussian noise (µ = 0, σ2 = 0.01) and the control effectiveness Ω is approximated

by a constant of value 0.5 N ·m · µs−1. The plant input is the stimulation signal which

is implemented based on (2–5). Hence, the reaction torque, output of the plant, is

controlled to track a desired torque that is constituted of high (tiring) and low (resting)

plateaus. Figure 2-1 illustrates the performance of the simulated torque tracking

controller without delay in the system. The controlled torque tracks the desired torque

despite noise and the tracking error decreases exponentially to zero (RMS error: 0.035

N ·m).

For comparison, the same controller is used with an input delayed plant model.

The EMD chosen is increasing exponentially from 50 ms to 65 ms, and delays the plant

stimulation input. The EMD values are within the range of values for naturally- and

artificially-induced contractions found in the literature: 32.6 ms to 41.9 ms after exercise

in [72], 86 ms in [73], 17.2 ms in [27] are examples. The same gains are used for the

two trials: ka1 = 50 and ka2 = 50. Plots in Figure 2-2 represent the results with the same

controller but with time-varying input delays implemented in the system model. Since

the controller is not designed to compensate for the EMD, the tracking error is rapidly

unstable and grows with time (RMS error: 35 N ·m).

2.5 Conclusion

A torque tracking controller was designed for isometric NMES-induced contractions

without considering the EMD in the muscle model. The torque tracking error was

proven to decay exponentially to zero without assuming system model knowledge.

But, experimental results show that the muscle contraction process delays the muscle

response, therefore the model input. Given the simulation results when the EMD

is implemented in the muscle model, the torque tracking error exhibits an unstable
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Figure 2-1: Simulation results for a torque tracking trial with non delayed modeled
NMES system. The plot in (a) illustrates the torque tracking performance without in-
put delays in the system. The torque tracking error is represented in (b) and converges
in less than one second.
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Figure 2-2: Simulation results for a torque tracking trial of a modeled FNMES experi-
ment with non zero EMD (τ(t)=0.05e0.002t). The torque tracking performance is illustrated
in (a) whereas the tracking error depicted in (b) diverges.
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behavior. However, this study helped to identify the issues of FES torque tracking. The

control strategy should compensate for the fatigue-induced EMD, which is introduced

in the dynamics via the control input, and should also take into account the unknown

control effectiveness which multiplies the electrical input. The error system and the

Lyapunov-based stability analysis developed in this chapter cannot be used with a

delayed input system. Motivated by this outcome, the results in the subsequent chapters

present closed-loop controllers that actively compensate for the delays, with associated

stability analysis and experimental results.
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CHAPTER 3
TORQUE CONTROL WITH CONSTANT EMD COMPENSATION

Experimental evidence exists to prove that there is a delay between the muscle

electrical activation and the onset of torque. In this chapter, the muscle model is mod-

ified to capture this phenomenon by inserting a constant input delay in the dynamics.

The aim of this chapter is to develop a control method that ensures stable NMES torque

tracking despite the EMD. The motivation to include the input delay in the system model

and in the control strategy is to improve NMES control performance and reliability in

torque tracking.

3.1 System Presentation

A constant input delay is introduced in the system, described previously in (2–1),

and is written as

R(t) = f(q) +D(t) + Ω(t)V (t− τ) , (3–1)

where τ ∈ R denotes the known constant EMD and where R, f , D, Ω and V were

introduced in (2–1).

The control objective is to design a continuous controller that ensures the state

R(t) of the input-delayed system in (3–1) tracks a desired torque Rd(t) ∈ R despite

uncertainties, known constant input delay and additive bounded disturbances. To

quantify this objective, the torque tracking error is defined as

e , Rd −R. (3–2)

To facilitate the subsequent analysis, an auxiliary tracking error is defined as

r , e−Bez, (3–3)

where the auxiliary signal ez ∈ R is defined as

ez ,
ˆ t

t−τ
V̇ (θ)dθ. (3–4)
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In 3–3, B ∈ R+ is a constant, best guess estimate of Ω. The mismatch between B and Ω

is defined as

η , B − Ω, (3–5)

which satisfies the following inequality

|η| ≤ η̄, (3–6)

based on Assumption 2, where η̄ ∈ R is a positive known constant.

Notation Throughout the study for notational brevity, a time dependent delayed function

ξτ : [0,∞)→ R corresponding to ξ is defined as

ξτ (t) ,


ξ (t− τ(t)) t ≥ τ(t)

0 t < τ(t)

.

.

3.2 Control Development

Multiplying (3–3) by Ω−1 and using (3–1) and (3–2) yields

Ω−1r = Ω−1 (Rd − f(q)−D)− Vτ −BΩ−1ez. (3–7)

The open-loop error system can be obtained by taking the first time-derivative of (3–7)

and using (3–3)-(3–5) as

Ω−1ṙ = −1

2

d

dt

(
Ω−1

)
r +N + S − V̇ − Ω−1η

(
V̇ − V̇t−τ

)
, (3–8)

where the auxiliary signals S ∈ R and N ∈ R are defined as

S ,
d

dt

(
Ω−1 (Rd − f(q)−D)

)
, (3–9)

N , −1

2

d

dt

(
Ω−1

)
r −B d

dt

(
Ω−1

)
ez. (3–10)

Based on (3–2)-(3–4), the open-loop error system in (3–8) now contains a delay-free

control input. From the subsequent analysis and (3–8), the control input is designed as
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the solution to

V̇ = kbr, V (t0) = V0, (3–11)

where V0 ∈ R is a selectable constant and kb ∈ R is a control gain such that

kb = kb1 + kb2 + kb3 (3–12)

where kb1, kb2 and kb3 ∈ R are positive constants. Substituting (3–11) into (3–8) yields

the following closed-loop error system

Ω−1ṙ = −1

2

d

dt

(
Ω−1

)
r +N + S − kbr − kbΩ−1η (r − rτ ) . (3–13)

The auxiliary signal S can be upper bounded by a known constant ε2 ∈ R+ according to

Assumptions 1 and 2 such as

|S| ≤ ε2, (3–14)

and using Assumption 2, the expression in (3–10) can be upper bounded as

|N | ≤ ζ1||z||, (3–15)

where ζ1 ∈ R is a positive known constant, and z ∈ R2 is defined as

z =

[
r ez

]T
. (3–16)

To facilitate the subsequent stability analysis, let y ∈ R4 be defined as

y =

[
r ez

√
P
√
Q

]T
, (3–17)

where P , Q ∈ R are Lyapunov-Krasovskii functionals defined as

P , ω

ˆ t

t−τ

(ˆ t

s

V̇ 2 (θ) dθ

)
ds, (3–18)

Q ,
kb
(
2Ω−1η + kbγ

2
2

)
4

ˆ t

t−τ
r2 (θ) dθ, (3–19)
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where ω and γ2 ∈ R+ are selectable constants. Based on the subsequent analysis, the

constant β1 ∈ R+ is defined as

β1 , min {m1,m2} , (3–20)

where

m1 , infτ

{
kb3 −

kb
(
8Ω−1η̄ + γ21 + kbγ

2
2

)
4

− k2bωτ

}
,

m2 , infτ

{
1

τ

(
ω − τ

(
kb
γ21

+
2

γ22

))}
,

where m1, m2 ∈ R are positive constants and γ1 ∈ R+ is a selectable constant.

Theorem 2. The control law, defined in (3–11), ensures global ultimately uniformly

bounded torque tracking in the sense that

|e(t)| ≤
√
a11exp(−a0t) + a12 +

√
a21exp(−a0t) + a22,

where a0, a11, a12, a21, a22 ∈ R+ denote constants, provided the following sufficient

conditions are satisfied

kb3 > supτ

{
k2bτω +

kb
(
8Ω−1η̄ + γ21 + kbγ

2
2

)
4

}
,

ω > supτ

{
τ

(
kb
γ21

+
2

γ22

)}
,

β1 >
ζ21

4kb1
.

Proof: Let VL : R × [0;∞) → R be a continuously differentiable, positive definite

functional defined as

VL ,
1

2
Ω−1r2 +

1

2
ez + P +Q, (3–21)

which can be bounded as

λ1||y||2 ≤ VL ≤ λ2||y||2, (3–22)
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where the constants λ1, λ2 ∈ R are defined as

λ1 ,
1

2
min

(
Ω
−1
, 1
)
, λ2 , max

(
1

2
Ω−1, 1

)
, (3–23)

where Ω and Ω are defined in Assumption 2. Applying the Leibniz Rule to determine

the time derivative of (3–18) and (3–19), and utilizing (3–4), (3–11) and (3–13), the time

derivative of (3–21) can be written as

V̇L =− kbr2 + Sr +Nr − kb
(
Ω−1ηr − ez

)
(r − rτ ) +

kb
(
2Ω−1η + kbγ

2
2

)
4

r2 + ωτ |V̇ |2

−
kb
(
2Ω−1η̄ + kbγ

2
2

)
4

r2τ − ω
ˆ t

t−τ
V 2(θ)dθ. (3–24)

Using Young’s Inequality, the following inequalities can be developed

kb|ez||r| ≤ kb

(
γ21
4
r2 +

1

γ21
e2z

)
, (3–25)

kb|ez||rτ | ≤
k2bγ

2
2

4
r2τ +

1

γ22
e2z, (3–26)

kbΩ
−1η̄|r||rτ | ≤

kbΩ
−1η̄

2

(
r2 + r2τ

)
. (3–27)

By applying the Cauchy-Schwarz Inequality,

|ez|2 =

∣∣∣∣ˆ t

t−τ
V̇ (θ)× 1dθ

∣∣∣∣2 ≤ ˆ t

t−τ
|1|2 dθ

ˆ t

t−τ
V̇ 2(θ)dθ ≤ τ

ˆ t

t−τ
V̇ 2(θ)dθ. (3–28)

By using Assumption 2, (3–6), (3–11), (3–14), (3–15) and (3–25)-(3–27), the expression

in (3–24) can be upper bounded as

V̇L ≤− kbr2 + ε2|r|+ ζ1||z|| |r|+
kbγ

2
1

4
r2 +

kb
(
8Ω−1η̄ + kbγ

2
2

)
4

r2 + k2bωτr
2

− ω
ˆ t

t−τ
V̇ 2 (θ) dθ +

(
kb
γ21

+
1

γ22

)
e2z. (3–29)

Using (3–12) and (3–28), (3–29) is upper bounded and grouped as

V̇L ≤− kb1r2 + ζ1||z|| |r| − kb2r2 + ε2 |r| −

(
kb3 −

kb
(
8Ω−1η̄ + γ21 + kbγ

2
2

)
4

− k2bωτ

)
r2

−
(
ω − τ

(
kb
γ21

+
2

γ22

)) ˆ t

t−τ
V̇ 2(θ)dθ − τ

γ22

ˆ t

t−τ
V̇ 2 (θ) dθ. (3–30)
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Completing the squares and using (3–28), (3–30) can be upper bounded as

V̇L ≤−

(
kb3 −

kb
(
8Ω−1η̄ + γ21 + kbγ

2
2

)
4

− k2bωτ

)
r2 +

ε22
4kb2

+
ζ21

4kb1
||z||2

− 1

τ

(
ω − τ

(
kb
γ21

+
2

γ22

))
ez −

τ

γ22

ˆ t

t−τ
V̇ 2 (θ) dθ. (3–31)

Using the definition of z in (3–16) and β1 in (3–20), the expression in (3–31) can be

upper bounded as

V̇L ≤ −
(
β1 −

ζ21
4β1

)
||z||2 +

ε22
4kb2

− 2τ

γ22

ˆ t

t−τ
V̇ 2(θ)dθ. (3–32)

After using (3–11), (3–18), (3–19) and the following inequality

ˆ t

t−τ

(ˆ t

s

V̇ 2(θ)dθ

)
ds ≤

ˆ t

t−τ

(
sups∈[t−τ,t]

ˆ t

t−τ
V̇ 2(θ)dθ

)
ds

= τ sups∈[t−τ,t]

ˆ t

t−τ
V̇ 2(θ)dθ = τ

ˆ t

t−τ
V̇ 2(θ)dθ, (3–33)

The expression in (3–32) can be bounded as

V̇L ≤ −
(
β1 −

ζ21
4kb1

)
||z||2 +

ε22
4kb2

− 1

2γ22ω
P − 2τkb

γ22
(
2Ω−1η̄ + kbγ22

)Q. (3–34)

From the definition of y in (3–17), (3–34) can be upper bounded as

V̇L ≤ −β2||y||2 +
ε22

4kb2
, (3–35)

where β2 ∈ R+ is defined as

β2 , min

(
β1 −

ζ21
4kb1

,
1

2γ22ω
, infτ

{
2τkb

γ22
(
2Ω−1η̄ + kbγ22

)}) .
Using (3–22), the expression in (3–35) can be written as

V̇L ≤ −
β2
λ2
VL +

ε22
4kb2

. (3–36)

Finally, the differential equation in (3–36) can be solved as

VL ≤ VL(t0)exp

(
−β2
λ2

(t− t0)
)

+
ε22λ2

4kb2β2

(
1− exp

(
−β2
λ2

(t− t0)
))

. (3–37)
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From (3–37), VL is globally uniformly ultimately bounded. Using (3–21), r and ez are also

bounded as

|r| ≤

√
2ΩVL(t0)exp

(
−β2
λ2

(t− t0)
)

+
Ωε22λ2
2kb2β2

(
1− exp

(
−β2
λ2

(t− t0)
))

, (3–38)

|ez| ≤

√
2VL(t0)exp

(
−β2
λ2

(t− t0)
)

+
ε22λ2

2kb2β2

(
1− exp

(
−β2
λ2

(t− t0)
))

. (3–39)

From (3–3), (3–38) and (3–39), |e| can be upper bounded as

|e| ≤

√
2ΩVL(t0)exp

(
−β2
λ2

(t− t0)
)

+
Ωε22λ2
2kb2β2

(
1− exp

(
−β2
λ2

(t− t0)
))

+B

√
2VL(t0)exp

(
−β2
λ2

(t− t0)
)

+
ε22λ2

2kb2β2

(
1− exp

(
−β2
λ2

(t− t0)
))

,

yielding the result in (3–20). Finally from (3–1) and (3–2), the control input V is

bounded.

3.3 Experiments

The control performance was evaluated in closed-loop NMES experiments. Surface

electrical stimulation was applied to the quadriceps muscle group to induce isometric

knee extension torque, which was measured by a force transducer. Based on (3–7), the

implemented control law used the torque and pre-trial EMD measurements to calculate

the stimulation signal.

3.3.1 Methods

Four healthy subjects (Age 25±2.5 years) participated in the trials after giving writ-

ten informed consent, as approved by the Institutional Review Board at the University

of Florida. Participants were asked to sit in a modified Leg Extension Machine (LEM).

Figure 1-2 illustrates the experimental setup used to measure the force while the stim-

ulation is delivered. Using the measured moment arm length, the force exerted on the

LEM from the lower shank was converted in a torque and used in the controller. Two

torque tracking exercises were performed on each participant’s right leg with a resting

period of 15 minutes between the trials.
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A current-controlled stimulator (RehaStim, Hasomed, GmbH, Germany) was

used to deliver the stimulation pattern to each participant’s quadriceps femoris muscle

group via bipolar surface electrodes (3”×5” PALS® Platinum oval electrodes) while

the participant was asked to remain passive. The electrical stimulation pattern was

composed of pulses with a constant pulse frequency of 30 Hz and a constant pulse

amplitude of 90 mA. Figure 3-1 illustrates an example of stimulation signal; in the

experiments, all parameters remained constant, except for the pulsewidth that was

modulated based on (3–7). A smooth periodic trajectory, the same as in Chapter 2, was

selected as the desired torque.

Implementation of the controller required the estimation of two parameters. The

first parameter is the control effectiveness Ω introduced in (3–1) that relates the input

voltage to the torque about the knee-joint. As described in (3–6), Ω is approximated by

the constant B, that is estimated before each torque tracking trial as the linear slope of

the recruitment curve, as illustrated on Figure 3-2. The muscle started to produced force

only after the pulsewidth went over a minimum threshold; this value, measured from the

recruitment curve, was added to the control input.

The second parameter is the constant EMD used in the controller. Based on

the measurement method developed in [73], the time lag between muscle electrical

activation and torque onset is estimated by performing the cross-correlation of these

two signals. The correlation measures the resemblance of two signals by shifting in time

one of the signals with respect to the other. The cross-correlation is maximum when the

two signals are aligned. The time shift that aligns the signals and reaches the maximum

of correlation corresponds to the delay between them. Therefore, the EMD can be

found by correlating the electrical input signal and the torque output. For the constant

EMD measurements, muscles were stimulated with a series of five short pulses that

evoked strong torques of short duration, as shown on Figure 3-3. The stimulation signal

parameters were the same as for the torque tracking trials with a pulse frequency of
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Figure 3-1: Example of a stimulation signal, with the three main user-defined parame-
ters: the pulse frequency, the pulse amplitude and the pulsewidth.

30 Hz and a pulse amplitude of 90 mA. The pulsewidth was selected to match a torque

output of 10 N ·m based on the recruitment curves. This protocol was preformed before

each trial and correlation of the pulsewidth input with the measured torque yielded a

constant delay estimation. The two minute torque tracking trial began after the EMD and

control effectiveness B were estimated. The recruitment curve was measured again at

the end of the session.

3.3.2 Results

The results show that including a constant EMD compensation term in the controller

allows the closed-loop NMES tracking to be stable. The tracking performance, the

tracking error and the control input for Subject 6 are depicted on Figure 3-4. The overall

increase in the pulsewidth illustrates the effects of fatigue: at the end of the trial, the
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Figure 3-2: Example of three recruitment curves obtained during a torque tracking
session on Subject 6. The pulse input was increased while the reaction torque was
measured. The constant estimated control effectiveness was determined by linear re-
gression.
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Figure 3-3: The torque is measured while the muscle is stimulated with an electrical
signal composed of five consecutive pulses with a constant amplitude 90 mA, a constant
pulse frequency 30 Hz and a pulsewidth aimed to match 10 N ·m. The plot represents
the normalized data.
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Table 3-1: Estimation of the control effectiveness as the linear slope of the recruitment
curve. The measurement test is performed before each torque tracking trial and at the
end of the session. The decreasing values demonstrate the effects of fatigue on the
recruitment properties.

Subject
Estimation of B (N ·m · µs−1)

1st trial 2nd trial End of session
1 0.4147 0.3292 0.3317
2 0.6617 0.6397 0.6426
3 0.4996 0.3912 0.4664
4 0.3661 0.2962 0.2797

muscles required more electrical input to produce the same torque than at the beginning

of the trial. Results for the control effectiveness measurements are presented in Table

3-1 where the effects of fatigue on the muscle dynamics are visible: the linear slope

of the recruitment curves is varying within a session. Therefore, it was necessary to

estimate B before each trial given its great variability. The last value of the control

effectiveness approximation was greater than the second value in some sessions. A

possible explanation is that the muscle fibers recruited during the first and second trials

reached a level of fatigue that prevented them to contract. Hence, new non fatigued

fibers could have been recruited during the last trial, restoring the overall state of the

muscle. All constant EMD estimations and RMS errors are provided in Table 3-2: the

mean values are 111.8 ms (± 8.5 ms) and 1.659 N ·m (± 0.395 N ·m) for the EMD and

the RMS error, respectively. In most cases, the EMD value is greater in the second trial.

3.4 Conclusion

In this chapter the developed torque tracking controller ensures that the reaction

torque tracks a desired torque despite constant input delay. The torque tracking error

was proven to exponentially decay to a ball in the presence of constant input delay.

Experiments on four healthy subjects were performed to test the performance on the

controller. The quadriceps femoris muscle group was stimulated based on torque feed-

back, constant EMD estimate, and control effectiveness approximation in order to track
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Figure 3-4: Evolution of the measured torque (solid line) during closed-loop torque track-
ing with constant delay compensation in (a). The corresponding torque tracking error is
represented in (b). The plot in (c) corresponds to the control input during the trial.
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Table 3-2: Results for torque tracking trials with constant delay compensation.

Subject-Trial RMS errors constant EMD
1-a 2.377 N ·m 116 ms
1-b 2.156 N ·m 123 ms
2-a 1.315 N ·m 105 ms
2-b 1.657 N ·m 123 ms
3-a 1.466 N ·m 102 ms
3-b 1.445 N ·m 114 ms
4-a 1.530 N ·m 103 ms
4-b 1.328 N ·m 108 ms

a desired torque. The two last parameters were estimated before each trial and it was

inferred from the measurements that fatigue had major effects on the system dynam-

ics and especially the delay, yielding considerable variations in the parameter values

between the trials. Thus, the EMD in the muscle model should also be considered as

time-varying in the muscle model.
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CHAPTER 4
TORQUE CONTROL WITH TIME-VARYING EMD COMPENSATION

Based on the fact that the EMD depends on the muscle state, the control method

developed in Chapter 3 is modified in this chapter for a time-varying input delayed

system. In this chapter, the implications of a time-varying delay are investigated and

result in a new control design and stability analysis. New experiments are conducted

to assess the control performance. Based on experimental results, both constant and

time-varying delay compensation strategies are compared.

4.1 Control Design

The nonlinear delayed model is defined as

R(t) = f(q) +D(t) + Ω(t)V (t− τ(t)) , (4–1)

where τ ∈ R denotes the time varying input delay and where R, f , D, Ω and V were

defined in (2–1).

Assumption 3. The EMD τ(t) is bounded such that 0 < τ(t) < ϕ1 for all t, where

ϕ1 ∈ R+ is a known constant. The rate of change of the delay is bounded such that

|τ̇ | < 1 − ε, where ε ∈ R+ satisfies 0 < ε < 1 and its second time derivative is also

bounded such that |τ̈ | < ϕ2, where ϕ2 ∈ R+ is a known constant.

Remark 2. Assumption 3 is mild in the sense that it implies that the delay is bounded

and that the change in the delay is a slow process. This assumption is demonstrated

from the subsequent experimental results.

The control objective is the same as in the previous chapter, except that the

reaction torque R(t) should track the desired torque Rd(t) despite time-varying input

delays. The system error defined by the signals r, e, ez and η was defined in Chapter 3.

Multiplying (3–3) by Ω−1 and using (3–2)and (4–1) yields

Ω−1r = Ω−1 (Rd − f −D)− Vτ −BΩ−1ez. (4–2)
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The open-loop error system can be obtained by taking the time-derivative of (4–2) and

using (3–4) and (3–5) such that

Ω−1ṙ = −1

2

d

dt

(
Ω−1

)
r +N + S − V̇ − Ω−1η

(
V̇ − (1− τ̇) V̇τ

)
, (4–3)

where the auxiliary signals S ∈ R and N ∈ R are defined as

S ,
d

dt

(
Ω−1 (Rd − f −D)

)
, (4–4)

N , −1

2

d

dt

(
Ω−1

)
r −B d

dt

(
Ω−1

)
ez. (4–5)

Based on (3–2)-(3–4), the open-loop error system in (4–3) now contains a delay-free

control input. From the subsequent analysis and (4–3), the control input is designed as

a solution to

V̇ = kbr, V (0) = V0, (4–6)

where V0 ∈ R is a selectable constant, and kb ∈ R is a selectable constant control gain

such that

kb , kb1 + kb2 + kb3 , (4–7)

where kb1, kb2 and kb3 ∈ R+. Substituting (4–6) into (4–3) yields to the following closed-

loop error system

Ω−1ṙ = −1

2
˙(Ω−1)r +N + S − kbr − kbΩ−1η (r − (1− τ̇) rτ ) . (4–8)

The auxiliary signal S in (4–4) can be upper bounded by a known constant ε2 ∈ R+

according to Assumptions 1 and 2 such that

|S| ≤ ε2, (4–9)

and using Assumption 2, the expression in (4–5) can be upper bounded as

|N | ≤ ζ1||z||, (4–10)
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where ζ1 ∈ R is a positive known constant, and z ∈ R2 is defined as

z =

[
r ez

]T
. (4–11)

To facilitate the subsequent stability analysis, let y ∈ R4 be defined as

y =

[
r ez

√
P
√
Q

]T
, (4–12)

where P , Q ∈ R are LK functionals defined as

P , ω

ˆ t

t−τ

(ˆ t

s

V̇ 2 (θ) dθ

)
ds, (4–13)

Q ,
kb
(
2Ω−1η̄ + kbγ

2
2

)
2 (1− τ̇)

ˆ t

t−τ
r2(θ)dθ, (4–14)

where ω and γ2 ∈ R+ are selectable constants. Based on the subsequent analysis, the

constant β1 ∈ R+ is defined such that

β1 , min {m1,m2} , (4–15)

with

m1 , infτ,τ̇

{
kb3 −

kbγ
2
1

4
−
kb
(
2Ω−1η̄ (3− 2τ̇) + kbγ

2
2

)
2 (1− τ̇)

− k2bωτ

}
,

m2 , infτ,τ̇

{
1

τ

(
ω (1− τ̇)− τ

(
kb
γ21

+
4

γ22

)
−
(
2Ω−1η̄ + kbγ

2
2

)
ϕ2

2kb (1− τ̇)2

)}
,

where m1, m2 ∈ R are positive constants and γ1 ∈ R+ is a selectable constant.

Theorem 3. Given the static model in (4–1), the control law in (4–6) ensures global

uniformly ultimately bounded torque tracking in the sense that

|e(t) ≤
√
c11exp (−c0t) + c12 +

√
c21exp (−c0t) + c22, (4–16)
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where c0, c11, c12, c21 and c22 ∈ R+ denote constants, provided the following sufficient

conditions are satisfied

kb3 > supτ,τ̇

{
k2bτω +

kb
(
2Ω−1η̄ (3− 2τ̇) + kbγ

2
2

)
2 (1− τ̇)

+
kbγ

2
1

4

}
,

ω > supτ,τ̇

{
τ

1− τ̇

(
kb
γ21

+
4

γ22

)
+

(
2Ω−1η̄ + kbγ

2
2

)
ϕ2

2kb (1− τ̇)3

}
,

β1 >
ζ21

4kb1
.

Proof: Let VL : R × [0;∞) → R be a continuously differentiable, positive definite

functional on an open set D ⊆ R, defined as

VL ,
1

2
Ω−1r2 +

1

2
ez + P +Q, (4–17)

which can be bounded as

λ1||y||2 ≤ VL ≤ λ2||y||2, (4–18)

where the constants λ1, λ2 ∈ R are defined as

λ1 ,
1

2
min

(
Ω
−1
, 1
)
, λ2 , max

(
1

2
Ω−1, 1

)
, (4–19)

where Ω and Ω are defined in Assumption 2. Applying the Leibniz Rule to determine

the time derivative of (4–13) and (4–14), and utilizing (3–4), (4–6) and (4–8), the time

derivative of (4–17) can be written as

V̇L =− kbr2 + Sr +Nr − kb
(
Ω−1ηr − ez

)
(r − (1− τ̇) rτ ) +

kb
(
2Ω−1η + kbγ

2
2

)
2 (1− τ̇)

r2 + ωτ |V̇ |2

− kb
2

(
2Ω−1η̄ + kbγ

2
2

)
r2τ − ω (1− τ̇)

ˆ t

t−τ
V 2(θ)dθ +

kb
(
2Ω−1η̄ + kbγ

2
2

)
τ̈

2 (1− τ̇)2

ˆ t

t−τ
r2(θ)dθ.

(4–20)
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Using Young’s Inequality and Assumption 3, the following inequalities can be developed

kb|ez||r| ≤ kb

(
γ21
4
r2 +

1

γ21
e2z

)
, (4–21)

kb (1− τ̇) |ez||rτ | ≤
k2bγ

2
2

2
r2τ +

2

γ22
e2z, (4–22)

kb (1− τ̇) Ω−1η̄|r||rτ | ≤ kbΩ
−1η̄

(
r2 + r2τ

)
. (4–23)

By applying the Cauchy-Schwarz Inequality,

|ez|2 =

∣∣∣∣ˆ t

t−τ
V̇ (θ)× 1dθ

∣∣∣∣2 ≤ ˆ t

t−τ
|1|2 dθ

ˆ t

t−τ
V̇ 2(θ)dθ ≤ τ

ˆ t

t−τ
V̇ 2(θ)dθ. (4–24)

By using Assumptions 2 and 3, (3–6), (4–6), (4–9), (4–10) and (4–21)-(4–23), the

expression in (4–20) can be upper bounded as

V̇L ≤− kbr2 + ε2|r|+ ζ1||z|| |r|+
kbγ

2
1

4
r2 +

kb
(
2Ω−1η̄ (3− 2τ̇) + kbγ

2
2

)
2 (1− τ̇)

r2 + k2bωτr
2

− ω (1− τ̇)

ˆ t

t−τ
V̇ 2 (θ) dθ +

(
kb
γ21

+
2

γ22

)
e2z +

(
2Ω−1η̄ + kbγ

2
2

)
ϕ2

2kb (1− τ̇)2

ˆ t

t−τ
V̇ 2 (θ) dθ.

(4–25)

Using (4–7) and (4–24), (4–25) is upper bounded and grouped as

V̇L ≤− kb1r2 + ζ1||z|| |r| − kb2r2 + ε2 |r| −

(
kb3 −

kbγ
2
1

4
−
kb
(
2Ω−1η̄(3− 2τ̇) + kbγ

2
2

)
2 (1− τ̇)

− k2bωτ

)
r2

−

(
ω(1− τ̇)− τ

(
kb
γ21

+
4

γ22

)
−
(
2Ω−1η̄ + kbγ

2
2

)
ϕ2

2kb(1− τ̇)2

)ˆ t

t−τ
V̇ 2(θ)dθ − 2τ

γ22

ˆ t

t−τ
V̇ 2 (θ) dθ.

(4–26)

Completing the squares and using (4–24), (4–26) can be upper bounded as

V̇L ≤−

(
kb3 −

kbγ
2
1

4
−
kb
(
2Ω−1η̄(3− 2τ̇) + kbγ

2
2

)
2 (1− τ̇)

− k2bωτ

)
r2 +

ε22
4kb2

+
ζ21

4kb1
||z||2

− 1

τ

(
ω(1− τ̇)− τ

(
kb
γ21

+
4

γ22

)
−
(
2Ω−1η̄ + kbγ

2
2

)
ϕ2

2kb(1− τ̇)2

)
ez −

2τ

γ22

ˆ t

t−τ
V̇ 2 (θ) dθ. (4–27)
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Using the definition of z in (4–11) and β1 in (4–15), the expression in (4–27) can be

upper bounded as

V̇L ≤ −
(
β1 −

ζ21
4β1

)
||z||2 +

ε22
4kb2

− 2τ

γ22

ˆ t

t−τ
V̇ 2(θ)dθ. (4–28)

After using (4–6), (4–13), (4–14) and the following inequality

ˆ t

t−τ

(ˆ t

s

V̇ 2(θ)dθ

)
ds ≤

ˆ t

t−τ

(
sups∈[t−τ,t]

ˆ t

t−τ
V̇ 2(θ)dθ

)
ds

= τ sups∈[t−τ,t]

ˆ t

t−τ
V̇ 2(θ)dθ = τ

ˆ t

t−τ
V̇ 2(θ)dθ, (4–29)

The expression in (4–28) can be bounded as

V̇L ≤ −
(
β1 −

ζ21
4kb1

)
||z||2 +

ε22
4kb2

− 1

γ22ω
P − 2τkb (1− τ̇)

γ22
(
2Ω−1η̄ + kbγ22

)Q. (4–30)

From the definition of y in (4–12), (4–30) can be upper bounded as

V̇L ≤ −β2||y||2 +
ε22

4kb2
, (4–31)

where β2 ∈ R+ is defined as

β2 , min

(
β1 −

ζ21
4kb1

,
1

γ22ω
, infτ,τ̇

{
2τkb (1− τ̇)

γ22
(
2Ω−1η̄ + kbγ22

)}) .
Using (4–18), the expression in (4–31) can be written as

V̇L ≤ −
β2
λ2
VL +

ε22
4kb2

. (4–32)

Finally, the differential equation in (4–32) can be solved as

VL ≤ VL(t0)exp

(
−β2
λ2

(t− t0)
)

+
ε22λ2

4kb2β2

(
1− exp

(
−β2
λ2

(t− t0)
))

. (4–33)
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From (4–33), VL is globally uniformly ultimately bounded. Using (4–17), r and ez are also

bounded as

|r| ≤

√
2ΩVL(t0)exp

(
−β2
λ2

(t− t0)
)

+
Ω̄ε22λ2
2kb2β2

(
1− exp

(
−β2
λ2

(t− t0)
))

, (4–34)

|ez| ≤

√
2VL(t0)exp

(
−β2
λ2

(t− t0)
)

+
ε22λ2

2kb2β2

(
1− exp

(
−β2
λ2

(t− t0)
))

. (4–35)

From (3–3), (4–34) and (4–35), |e| can be upper bounded as

|e| ≤

√
2ΩVL(t0)exp

(
−β2
λ2

(t− t0)
)

+
Ω̄ε22λ2
2kb2β2

(
1− exp

(
−β2
λ2

(t− t0)
))

+B

√
2VL(t0)exp

(
−β2
λ2

(t− t0)
)

+
ε22λ2

2kb2β2

(
1− exp

(
−β2
λ2

(t− t0)
))

,

yielding the result in (4–16). Finally from (3–2) and (4–1), the control input V is

bounded.

4.2 Experiments

The controller in (4–6) was implemented to yield closed-loop isometric contractions

using torque feedback. The protocol used in this experimental session is the same as

in Chapter 3, with a time-varying delay estimation instead of a constant approximation.

Four healthy subjects participated in the trials after giving their written consent. The

stimulation parameters were 30 Hz for the constant pulse frequency, 90 mA for the

constant amplitude and the pulsewidth varied according to the control law in (4–6).

A recruitment curve was measured before each trial and at the end of each session

in order to update the control effectiveness estimate. The minimal pulsewidth value

required to produce torque was measured using the recruitment curves and was added

to the control input. Fifteen minutes separated each trials that lasted two minutes.

The EMD was measured in real-time based on the following algorithm: 1) the input

pulsewidth and measured torque data were buffered in a vector for one period of

the desired trajectory, 3) the two vectors are normalized, 3) the cross-correlation

between the two normalized vectors is calculated, 4) the index that maximized the
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cross-correlation was converted into seconds (multiplied by the sampling time) to obtain

the time delay between the two signals.

Remark 3. Another common method to measure the delay between two signals is to

use a threshold and to define the delay as the difference between the times at which

the signals go over the threshold. This method was first implemented and provided

satisfying results. However, the threshold value depends on the user and on the

measurement noise. It requires pre-trial tests to find a satisfying threshold, which leads

to premature muscle fatigue. The cross-correlation method is preferred because it does

not require user-dependent parameters. Given the great variability between individuals,

the EMD was estimated by cross-correlating the control input and the reaction torque,

instead of using the threshold method.

Table 4-1.a provides the control effectiveness measurements at the beginning and

at the end of each session and the RMS errors for each trials, whereas notable values

for the EMD estimates are provided in Table 4-1.b. As expected, B was varying between

the trials, mostly decreasing. The fact that B could increase on the last measurement

was discussed in the previous chapter. The tracking performance for a trial with Subject

6 where the EMD was estimated in real time is depicted on Figure 4-1. Among all trials,

the mean RMS error is 1.379 N ·m (± 0.275 N ·m) and the mean EMD is 94.5 ms (±

10.7 ms). This last value is within the range of other results in the literature, for example

in [73], where Vos et al. found an EMD of 86 ms in the vastus lateralis. Figure 4-3

represents the variations of the EMD for all trials. In most cases, the EMD decreased

between the first and the second trial. It is suggested that fatigue prevents muscle fibers

from producing supplementary torque after a certain state of muscle fatigue; thus, new

fibers are recruited, decreasing the overall muscle fatigue. Once all fibers are fatigued,

all EMD curves are increasing.
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Figure 4-1: The measured torque, represented by a solid line in (a), tracks a desired
torque when the control input in (c) compensates for the time-varying delay. In (b), the
torque tracking error is stable.
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Figure 4-2: The delay estimation, averaged with a moving window of 30 seconds off-line
(solid line), is represented with the online EMD measurements (dashed line) used in the
control input.

Figure 4-3: Temporal EMD evoluation based on the real time estimates among all trials.
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Table 4-1: Results for torque tracking trials with time-varying delay compensation. The
variation of the EMD for one trial is obtained by subtracting the minimum estimated
value to the maximum value and dividing by the minimum value.

Subject-Trial B estimation RMS error
1-a 0.3732 N ·m · µs−1 1.810 N ·m
1-b 0.2529 N ·m · µs−1 1.694 N ·m
2-a 0.7353 N ·m · µs−1 1.448 N ·m
2-b 0.6251 N ·m · µs−1 1.324 N ·m
3-a 0.4948 N ·m · µs−1 1.439 N ·m
3-b 0.4313 N ·m · µs−1 1.039 N ·m
4-a 0.3191 N ·m · µs−1 1.167 N ·m
4-b 0.2376 N ·m · µs−1 1.110 N ·m

(a)

Subject-Trial
EMD estimation

Mean value Start value End value Min value Max value Variation
1-a 101.0 ms 88.3 ms 105.8 ms 80.3 ms 115.3 ms 45 %
1-b 102.0 ms 98.7 ms 131.6 ms 87.1 ms 130.9 ms 50 %
2-a 99.5 ms 83.0 ms 111.3 ms 80.5 ms 116.6 ms 45 %
2-b 93.7 ms 93.9 ms 97.4 ms 79.9 ms 103.8 ms 30 %
3-a 82.4 ms 80.9 ms 75.5 ms 74.5 ms 091.4 ms 23 %
3-b 77.7 ms 82.7 ms 85.1 ms 68.9 ms 085.1 ms 24 %
4-a 90.2 ms 63.7 ms 124.6 ms 58.4 ms 123.9 ms 112 %
4-b 116.2 ms 94.5 ms 141.6 ms 88.8 ms 145.1 ms 63 %

(b)
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Figure 4-4: RMS errors, computed using a 16-s moving window to average the raw
tracking errors: comparison between constant and time-varying delay estimation. The
dashed lines correspond to the standard deviations.

4.3 Comparison with Constant Delay Compensation

Torque tracking trials were performed with two different control methods: eight trials

with constant delay compensation, eight with time-varying delay compensation. The

results are now compared to highlight the improved performance when the input delay

is considered to be time-varying. Table 4-2 provides the RMS errors for both protocols.

For each trial, a time-varying RMS error was computed by using a 16-s moving window

to average raw tracking errors. Time-varying RMS errors were then averaged across all

subjects: Figure 4-4 represents the averaged RMS for constant and time-varying delay

compensation. The curve for the time-varying delay compensation tend to be below the

RMS for constant EMD compensation. Based on these results, the time-varying EMD

compensation yielded a better tracking than the constant delay compensation method.

4.4 Conclusion

Torque tracking was achieved in isometric NMES experiements on healthy individ-

uals using a time-varying delay estimation to compensate for the EMD in the muscle

dynamics. The performances were stable despite the time-varying input delay and
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Table 4-2: RMS error comparison between constant and time-varying EMD estimation

kkkkkkkkk
Subject-Trial

RMS error
constant delay

estimation

RMS error
time-varying delay

estimation
1-a 2.377 N ·m 1.810 N ·m
1-b 2.156 N ·m 1.694 N ·m
2-a 1.315 N ·m 1.448 N ·m
2-b 1.657N ·m 1.324 N ·m
3-a 1.466 N ·m 1.439 N ·m
3-b 1.445 N ·m 1.039 N ·m
4-a 1.530 N ·m 1.167 N ·m
4-b 1.328 N ·m 1.110 N ·m

unknown dynamics. The comparison between constant and time-varying delay com-

pensation methods suggests that time-varying EMD compensation yields better results.

However, more trials are required to prove this statement. In the stability analysis, the

EMD was assumed to be known and could be used in the control law. At the time of

the development of the work, no EMD model was available yet; the delay had to be

estimated. Therefore, the tracking error between the desired and the reaction torque

depends also on the quality of the EMD estimation.
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CHAPTER 5
CONCLUSION

5.1 Achievements

This thesis aimed to design and test isometric torque tracking controllers for

electrically-evoked contractions of the quadriceps femoris muscle group. Adapting

the position tracking control strategy to the isometric system, the work in Chapter 2

helped to understand the issues of torque tracking control and emphasized the need

of consideration for the EMD. A torque tracking controller was designed for isometric

FES systems without input delay compensation and failed to stabilize the system in the

presence of input delays.

In Chapters 3 and 4, a controller was developed to compensate for input delays:

constant and time-varying EMD compensation were studied separately. Controllers

with constant or time-varying EMD compensation ensured the theoretical stability of the

torque tracking error, which was illustrated in experiments. Both strategies yielded good

tracking results. However, considering the EMD as time-varying in the muscle model

provides better torque control as illustrated in Chapter 4.

5.2 Future Work

Outcomes of this thesis proved that NMES-induced isometric torque tracking can be

achieved despite uncertainties and time-varying EMD, but the results could be improved.

More trials would contribute to prove that time-varying EMD compensation in torque

tracking leads to better results than constant delay compensation. Because the EMD

was assumed to be known in the control development, control implementation required

EMD estimation. There are two methods to compute the delay in the controller: by using

a model, which still needs to be developed, or by measuring the EMD in real time. The

results obtained depended on the quality of the EMD estimation method. Future efforts

should consider unknown delays in the system.
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in 2009. With a strong interest for Mathematics and Physics, she pursued two years of

Preparatory Classes before Entrance to French Engineering Schools, which led her to
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